Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-3x^{2}-8x-3=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-3\right)\left(-3\right)}}{2\left(-3\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-3\right)\left(-3\right)}}{2\left(-3\right)}
-8 kvadratini chiqarish.
x=\frac{-\left(-8\right)±\sqrt{64+12\left(-3\right)}}{2\left(-3\right)}
-4 ni -3 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{64-36}}{2\left(-3\right)}
12 ni -3 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{28}}{2\left(-3\right)}
64 ni -36 ga qo'shish.
x=\frac{-\left(-8\right)±2\sqrt{7}}{2\left(-3\right)}
28 ning kvadrat ildizini chiqarish.
x=\frac{8±2\sqrt{7}}{2\left(-3\right)}
-8 ning teskarisi 8 ga teng.
x=\frac{8±2\sqrt{7}}{-6}
2 ni -3 marotabaga ko'paytirish.
x=\frac{2\sqrt{7}+8}{-6}
x=\frac{8±2\sqrt{7}}{-6} tenglamasini yeching, bunda ± musbat. 8 ni 2\sqrt{7} ga qo'shish.
x=\frac{-\sqrt{7}-4}{3}
8+2\sqrt{7} ni -6 ga bo'lish.
x=\frac{8-2\sqrt{7}}{-6}
x=\frac{8±2\sqrt{7}}{-6} tenglamasini yeching, bunda ± manfiy. 8 dan 2\sqrt{7} ni ayirish.
x=\frac{\sqrt{7}-4}{3}
8-2\sqrt{7} ni -6 ga bo'lish.
-3x^{2}-8x-3=-3\left(x-\frac{-\sqrt{7}-4}{3}\right)\left(x-\frac{\sqrt{7}-4}{3}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-4-\sqrt{7}}{3} ga va x_{2} uchun \frac{-4+\sqrt{7}}{3} ga bo‘ling.