Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Omil
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{\left(12\sqrt{3}+24\right)\left(\sqrt{2}-\sqrt{6}\right)}{\left(\sqrt{2}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{6}\right)}
\frac{12\sqrt{3}+24}{\sqrt{2}+\sqrt{6}} maxrajini \sqrt{2}-\sqrt{6} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\left(12\sqrt{3}+24\right)\left(\sqrt{2}-\sqrt{6}\right)}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{6}\right)^{2}}
Hisoblang: \left(\sqrt{2}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{6}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(12\sqrt{3}+24\right)\left(\sqrt{2}-\sqrt{6}\right)}{2-6}
\sqrt{2} kvadratini chiqarish. \sqrt{6} kvadratini chiqarish.
\frac{\left(12\sqrt{3}+24\right)\left(\sqrt{2}-\sqrt{6}\right)}{-4}
-4 olish uchun 2 dan 6 ni ayirish.
\frac{12\sqrt{3}\sqrt{2}-12\sqrt{3}\sqrt{6}+24\sqrt{2}-24\sqrt{6}}{-4}
12\sqrt{3}+24 ifodaning har bir elementini \sqrt{2}-\sqrt{6} ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
\frac{12\sqrt{6}-12\sqrt{3}\sqrt{6}+24\sqrt{2}-24\sqrt{6}}{-4}
\sqrt{3} va \sqrt{2} ni koʻpaytirish uchun kvadrat ildiz ichidagi sonlarni koʻpaytiring.
\frac{12\sqrt{6}-12\sqrt{3}\sqrt{3}\sqrt{2}+24\sqrt{2}-24\sqrt{6}}{-4}
Faktor: 6=3\times 2. \sqrt{3\times 2} koʻpaytmasining kvadrat ildizini \sqrt{3}\sqrt{2} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing.
\frac{12\sqrt{6}-12\times 3\sqrt{2}+24\sqrt{2}-24\sqrt{6}}{-4}
3 hosil qilish uchun \sqrt{3} va \sqrt{3} ni ko'paytirish.
\frac{12\sqrt{6}-36\sqrt{2}+24\sqrt{2}-24\sqrt{6}}{-4}
-36 hosil qilish uchun -12 va 3 ni ko'paytirish.
\frac{12\sqrt{6}-12\sqrt{2}-24\sqrt{6}}{-4}
-12\sqrt{2} ni olish uchun -36\sqrt{2} va 24\sqrt{2} ni birlashtirish.
\frac{-12\sqrt{6}-12\sqrt{2}}{-4}
-12\sqrt{6} ni olish uchun 12\sqrt{6} va -24\sqrt{6} ni birlashtirish.