Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Ashyoviy qism
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}
Ham hisoblagich, ham maxrajni maxraj kompleksiga murakkablash orqali ko'paytirish, 1+i.
\frac{\left(1+i\right)\left(1+i\right)}{1^{2}-i^{2}}
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+i\right)\left(1+i\right)}{2}
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
\frac{1\times 1+i+i+i^{2}}{2}
Binomlarni ko‘paytirgandek 1+i va 1+i murakkab sonlarni ko‘paytiring.
\frac{1\times 1+i+i-1}{2}
Ta’rifi bo‘yicha, i^{2} – bu -1.
\frac{1+i+i-1}{2}
1\times 1+i+i-1 ichidagi ko‘paytirishlarni bajaring.
\frac{1-1+\left(1+1\right)i}{2}
1+i+i-1 ichida real va mavhum qismlarni birlashtiring.
\frac{2i}{2}
1-1+\left(1+1\right)i ichida qo‘shishlarni bajaring.
i
i ni olish uchun 2i ni 2 ga bo‘ling.
Re(\frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)})
\frac{1+i}{1-i}ning surat va maxrajini murakkab tutash maxraj 1+i bilan ko‘paytiring.
Re(\frac{\left(1+i\right)\left(1+i\right)}{1^{2}-i^{2}})
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(1+i\right)\left(1+i\right)}{2})
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
Re(\frac{1\times 1+i+i+i^{2}}{2})
Binomlarni ko‘paytirgandek 1+i va 1+i murakkab sonlarni ko‘paytiring.
Re(\frac{1\times 1+i+i-1}{2})
Ta’rifi bo‘yicha, i^{2} – bu -1.
Re(\frac{1+i+i-1}{2})
1\times 1+i+i-1 ichidagi ko‘paytirishlarni bajaring.
Re(\frac{1-1+\left(1+1\right)i}{2})
1+i+i-1 ichida real va mavhum qismlarni birlashtiring.
Re(\frac{2i}{2})
1-1+\left(1+1\right)i ichida qo‘shishlarni bajaring.
Re(i)
i ni olish uchun 2i ni 2 ga bo‘ling.
0
i ning real qismi – 0.