Asosiy tarkibga oʻtish
Baholash
Tick mark Image
x ga nisbatan hosilani topish
Tick mark Image

Baham ko'rish

\frac{\left(\sqrt{x^{2}+y^{2}}-y\right)\left(\sqrt{x^{2}+y^{2}}+y\right)}{\left(x-\sqrt{x^{2}-y^{2}}\right)\left(\sqrt{x^{2}-y^{2}}+x\right)}
\frac{\sqrt{x^{2}+y^{2}}-y}{x-\sqrt{x^{2}-y^{2}}} ni \frac{\sqrt{x^{2}-y^{2}}+x}{\sqrt{x^{2}+y^{2}}+y} ga bo'lish \frac{\sqrt{x^{2}+y^{2}}-y}{x-\sqrt{x^{2}-y^{2}}} ga k'paytirish \frac{\sqrt{x^{2}-y^{2}}+x}{\sqrt{x^{2}+y^{2}}+y} ga qaytarish.
\frac{\left(\sqrt{x^{2}+y^{2}}\right)^{2}-y^{2}}{\left(x-\sqrt{x^{2}-y^{2}}\right)\left(\sqrt{x^{2}-y^{2}}+x\right)}
Hisoblang: \left(\sqrt{x^{2}+y^{2}}-y\right)\left(\sqrt{x^{2}+y^{2}}+y\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{x^{2}+y^{2}-y^{2}}{\left(x-\sqrt{x^{2}-y^{2}}\right)\left(\sqrt{x^{2}-y^{2}}+x\right)}
2 daraja ko‘rsatkichini \sqrt{x^{2}+y^{2}} ga hisoblang va x^{2}+y^{2} ni qiymatni oling.
\frac{x^{2}}{\left(x-\sqrt{x^{2}-y^{2}}\right)\left(\sqrt{x^{2}-y^{2}}+x\right)}
0 ni olish uchun y^{2} va -y^{2} ni birlashtirish.
\frac{x^{2}}{x^{2}-\left(\sqrt{x^{2}-y^{2}}\right)^{2}}
Hisoblang: \left(x-\sqrt{x^{2}-y^{2}}\right)\left(\sqrt{x^{2}-y^{2}}+x\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{x^{2}}{x^{2}-\left(x^{2}-y^{2}\right)}
2 daraja ko‘rsatkichini \sqrt{x^{2}-y^{2}} ga hisoblang va x^{2}-y^{2} ni qiymatni oling.
\frac{x^{2}}{x^{2}-x^{2}+y^{2}}
x^{2}-y^{2} teskarisini topish uchun har birining teskarisini toping.
\frac{x^{2}}{y^{2}}
0 ni olish uchun x^{2} va -x^{2} ni birlashtirish.