Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Omil
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}
\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}} maxrajini \sqrt{5}+\sqrt{3} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}
Hisoblang: \left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{5-3}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}
\sqrt{5} kvadratini chiqarish. \sqrt{3} kvadratini chiqarish.
\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{2}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}
2 olish uchun 5 dan 3 ni ayirish.
\frac{\left(\sqrt{5}+\sqrt{3}\right)^{2}}{2}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}
\left(\sqrt{5}+\sqrt{3}\right)^{2} hosil qilish uchun \sqrt{5}+\sqrt{3} va \sqrt{5}+\sqrt{3} ni ko'paytirish.
\frac{\left(\sqrt{5}\right)^{2}+2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(\sqrt{5}+\sqrt{3}\right)^{2} kengaytirilishi uchun ishlating.
\frac{5+2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}
\sqrt{5} kvadrati – 5.
\frac{5+2\sqrt{15}+\left(\sqrt{3}\right)^{2}}{2}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}
\sqrt{5} va \sqrt{3} ni koʻpaytirish uchun kvadrat ildiz ichidagi sonlarni koʻpaytiring.
\frac{5+2\sqrt{15}+3}{2}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}
\sqrt{3} kvadrati – 3.
\frac{8+2\sqrt{15}}{2}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}
8 olish uchun 5 va 3'ni qo'shing.
4+\sqrt{15}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}
4+\sqrt{15} natijani olish uchun 8+2\sqrt{15} ning har bir ifodasini 2 ga bo‘ling.
4+\sqrt{15}+\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}
\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}} maxrajini \sqrt{5}-\sqrt{3} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
4+\sqrt{15}+\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Hisoblang: \left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4+\sqrt{15}+\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{5-3}
\sqrt{5} kvadratini chiqarish. \sqrt{3} kvadratini chiqarish.
4+\sqrt{15}+\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{2}
2 olish uchun 5 dan 3 ni ayirish.
4+\sqrt{15}+\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{2}
\left(\sqrt{5}-\sqrt{3}\right)^{2} hosil qilish uchun \sqrt{5}-\sqrt{3} va \sqrt{5}-\sqrt{3} ni ko'paytirish.
4+\sqrt{15}+\frac{\left(\sqrt{5}\right)^{2}-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(\sqrt{5}-\sqrt{3}\right)^{2} kengaytirilishi uchun ishlating.
4+\sqrt{15}+\frac{5-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2}
\sqrt{5} kvadrati – 5.
4+\sqrt{15}+\frac{5-2\sqrt{15}+\left(\sqrt{3}\right)^{2}}{2}
\sqrt{5} va \sqrt{3} ni koʻpaytirish uchun kvadrat ildiz ichidagi sonlarni koʻpaytiring.
4+\sqrt{15}+\frac{5-2\sqrt{15}+3}{2}
\sqrt{3} kvadrati – 3.
4+\sqrt{15}+\frac{8-2\sqrt{15}}{2}
8 olish uchun 5 va 3'ni qo'shing.
4+\sqrt{15}+4-\sqrt{15}
4-\sqrt{15} natijani olish uchun 8-2\sqrt{15} ning har bir ifodasini 2 ga bo‘ling.
8+\sqrt{15}-\sqrt{15}
8 olish uchun 4 va 4'ni qo'shing.
8
0 ni olish uchun \sqrt{15} va -\sqrt{15} ni birlashtirish.