x uchun yechish
x = \frac{8101 - \sqrt{16201}}{5832} \approx 1,3672354
Grafik
Baham ko'rish
Klipbordga nusxa olish
\sqrt{x}=75-54x
Tenglamaning ikkala tarafidan 54x ni ayirish.
\left(\sqrt{x}\right)^{2}=\left(75-54x\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
x=\left(75-54x\right)^{2}
2 daraja ko‘rsatkichini \sqrt{x} ga hisoblang va x ni qiymatni oling.
x=5625-8100x+2916x^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(75-54x\right)^{2} kengaytirilishi uchun ishlating.
x-5625=-8100x+2916x^{2}
Ikkala tarafdan 5625 ni ayirish.
x-5625+8100x=2916x^{2}
8100x ni ikki tarafga qo’shing.
8101x-5625=2916x^{2}
8101x ni olish uchun x va 8100x ni birlashtirish.
8101x-5625-2916x^{2}=0
Ikkala tarafdan 2916x^{2} ni ayirish.
-2916x^{2}+8101x-5625=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-8101±\sqrt{8101^{2}-4\left(-2916\right)\left(-5625\right)}}{2\left(-2916\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2916 ni a, 8101 ni b va -5625 ni c bilan almashtiring.
x=\frac{-8101±\sqrt{65626201-4\left(-2916\right)\left(-5625\right)}}{2\left(-2916\right)}
8101 kvadratini chiqarish.
x=\frac{-8101±\sqrt{65626201+11664\left(-5625\right)}}{2\left(-2916\right)}
-4 ni -2916 marotabaga ko'paytirish.
x=\frac{-8101±\sqrt{65626201-65610000}}{2\left(-2916\right)}
11664 ni -5625 marotabaga ko'paytirish.
x=\frac{-8101±\sqrt{16201}}{2\left(-2916\right)}
65626201 ni -65610000 ga qo'shish.
x=\frac{-8101±\sqrt{16201}}{-5832}
2 ni -2916 marotabaga ko'paytirish.
x=\frac{\sqrt{16201}-8101}{-5832}
x=\frac{-8101±\sqrt{16201}}{-5832} tenglamasini yeching, bunda ± musbat. -8101 ni \sqrt{16201} ga qo'shish.
x=\frac{8101-\sqrt{16201}}{5832}
-8101+\sqrt{16201} ni -5832 ga bo'lish.
x=\frac{-\sqrt{16201}-8101}{-5832}
x=\frac{-8101±\sqrt{16201}}{-5832} tenglamasini yeching, bunda ± manfiy. -8101 dan \sqrt{16201} ni ayirish.
x=\frac{\sqrt{16201}+8101}{5832}
-8101-\sqrt{16201} ni -5832 ga bo'lish.
x=\frac{8101-\sqrt{16201}}{5832} x=\frac{\sqrt{16201}+8101}{5832}
Tenglama yechildi.
54\times \frac{8101-\sqrt{16201}}{5832}+\sqrt{\frac{8101-\sqrt{16201}}{5832}}=75
54x+\sqrt{x}=75 tenglamasida x uchun \frac{8101-\sqrt{16201}}{5832} ni almashtiring.
75=75
Qisqartirish. x=\frac{8101-\sqrt{16201}}{5832} tenglamani qoniqtiradi.
54\times \frac{\sqrt{16201}+8101}{5832}+\sqrt{\frac{\sqrt{16201}+8101}{5832}}=75
54x+\sqrt{x}=75 tenglamasida x uchun \frac{\sqrt{16201}+8101}{5832} ni almashtiring.
\frac{1}{54}\times 16201^{\frac{1}{2}}+\frac{4051}{54}=75
Qisqartirish. x=\frac{\sqrt{16201}+8101}{5832} qiymati bu tenglamani qoniqtirmaydi.
x=\frac{8101-\sqrt{16201}}{5832}
\sqrt{x}=75-54x tenglamasi noyob yechimga ega.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}