Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x-x^{2}=-36x
Ikkala tarafdan x^{2} ni ayirish.
x-x^{2}+36x=0
36x ni ikki tarafga qo’shing.
37x-x^{2}=0
37x ni olish uchun x va 36x ni birlashtirish.
x\left(37-x\right)=0
x omili.
x=0 x=37
Tenglamani yechish uchun x=0 va 37-x=0 ni yeching.
x-x^{2}=-36x
Ikkala tarafdan x^{2} ni ayirish.
x-x^{2}+36x=0
36x ni ikki tarafga qo’shing.
37x-x^{2}=0
37x ni olish uchun x va 36x ni birlashtirish.
-x^{2}+37x=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-37±\sqrt{37^{2}}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 37 ni b va 0 ni c bilan almashtiring.
x=\frac{-37±37}{2\left(-1\right)}
37^{2} ning kvadrat ildizini chiqarish.
x=\frac{-37±37}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{0}{-2}
x=\frac{-37±37}{-2} tenglamasini yeching, bunda ± musbat. -37 ni 37 ga qo'shish.
x=0
0 ni -2 ga bo'lish.
x=-\frac{74}{-2}
x=\frac{-37±37}{-2} tenglamasini yeching, bunda ± manfiy. -37 dan 37 ni ayirish.
x=37
-74 ni -2 ga bo'lish.
x=0 x=37
Tenglama yechildi.
x-x^{2}=-36x
Ikkala tarafdan x^{2} ni ayirish.
x-x^{2}+36x=0
36x ni ikki tarafga qo’shing.
37x-x^{2}=0
37x ni olish uchun x va 36x ni birlashtirish.
-x^{2}+37x=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}+37x}{-1}=\frac{0}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{37}{-1}x=\frac{0}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-37x=\frac{0}{-1}
37 ni -1 ga bo'lish.
x^{2}-37x=0
0 ni -1 ga bo'lish.
x^{2}-37x+\left(-\frac{37}{2}\right)^{2}=\left(-\frac{37}{2}\right)^{2}
-37 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{37}{2} olish uchun. Keyin, -\frac{37}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-37x+\frac{1369}{4}=\frac{1369}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{37}{2} kvadratini chiqarish.
\left(x-\frac{37}{2}\right)^{2}=\frac{1369}{4}
x^{2}-37x+\frac{1369}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{37}{2}\right)^{2}}=\sqrt{\frac{1369}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{37}{2}=\frac{37}{2} x-\frac{37}{2}=-\frac{37}{2}
Qisqartirish.
x=37 x=0
\frac{37}{2} ni tenglamaning ikkala tarafiga qo'shish.