A uchun yechish
A=-\frac{165}{431}\approx -0,382830626
Baham ko'rish
Klipbordga nusxa olish
\frac{1}{2+\frac{1}{1+\frac{1}{\frac{2A}{A}+\frac{1}{A}}}}=\frac{64}{27}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 2 ni \frac{A}{A} marotabaga ko'paytirish.
\frac{1}{2+\frac{1}{1+\frac{1}{\frac{2A+1}{A}}}}=\frac{64}{27}
\frac{2A}{A} va \frac{1}{A} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{1}{2+\frac{1}{1+\frac{A}{2A+1}}}=\frac{64}{27}
A qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. 1 ni \frac{2A+1}{A} ga bo'lish 1 ga k'paytirish \frac{2A+1}{A} ga qaytarish.
\frac{1}{2+\frac{1}{\frac{2A+1}{2A+1}+\frac{A}{2A+1}}}=\frac{64}{27}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 1 ni \frac{2A+1}{2A+1} marotabaga ko'paytirish.
\frac{1}{2+\frac{1}{\frac{2A+1+A}{2A+1}}}=\frac{64}{27}
\frac{2A+1}{2A+1} va \frac{A}{2A+1} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{1}{2+\frac{1}{\frac{3A+1}{2A+1}}}=\frac{64}{27}
2A+1+A kabi iboralarga o‘xshab birlashtiring.
\frac{1}{2+\frac{2A+1}{3A+1}}=\frac{64}{27}
A qiymati -\frac{1}{2} teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. 1 ni \frac{3A+1}{2A+1} ga bo'lish 1 ga k'paytirish \frac{3A+1}{2A+1} ga qaytarish.
\frac{1}{\frac{2\left(3A+1\right)}{3A+1}+\frac{2A+1}{3A+1}}=\frac{64}{27}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 2 ni \frac{3A+1}{3A+1} marotabaga ko'paytirish.
\frac{1}{\frac{2\left(3A+1\right)+2A+1}{3A+1}}=\frac{64}{27}
\frac{2\left(3A+1\right)}{3A+1} va \frac{2A+1}{3A+1} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{1}{\frac{6A+2+2A+1}{3A+1}}=\frac{64}{27}
2\left(3A+1\right)+2A+1 ichidagi ko‘paytirishlarni bajaring.
\frac{1}{\frac{8A+3}{3A+1}}=\frac{64}{27}
6A+2+2A+1 kabi iboralarga o‘xshab birlashtiring.
\frac{3A+1}{8A+3}=\frac{64}{27}
A qiymati -\frac{1}{3} teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. 1 ni \frac{8A+3}{3A+1} ga bo'lish 1 ga k'paytirish \frac{8A+3}{3A+1} ga qaytarish.
27\left(3A+1\right)=64\left(8A+3\right)
A qiymati -\frac{3}{8} teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 27\left(8A+3\right) ga, 8A+3,27 ning eng kichik karralisiga ko‘paytiring.
81A+27=64\left(8A+3\right)
27 ga 3A+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
81A+27=512A+192
64 ga 8A+3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
81A+27-512A=192
Ikkala tarafdan 512A ni ayirish.
-431A+27=192
-431A ni olish uchun 81A va -512A ni birlashtirish.
-431A=192-27
Ikkala tarafdan 27 ni ayirish.
-431A=165
165 olish uchun 192 dan 27 ni ayirish.
A=\frac{165}{-431}
Ikki tarafini -431 ga bo‘ling.
A=-\frac{165}{431}
\frac{165}{-431} kasri manfiy belgini olib tashlash bilan -\frac{165}{431} sifatida qayta yozilishi mumkin.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}