x کے لئے حل کریں
\left\{\begin{matrix}x=-\frac{e^{y}-z-zy^{2}}{y\left(y^{2}+1\right)}\text{, }&y\neq 0\\x\in \mathrm{R}\text{, }&z=1\text{ and }y=0\end{matrix}\right.
حصہ
کلپ بورڈ پر کاپی کیا گیا
z\left(y^{2}+1\right)=xy\left(y^{2}+1\right)+e^{y}
y^{2}+1 سے مساوات کی دونوں اطراف کو ضرب دیں۔
zy^{2}+z=xy\left(y^{2}+1\right)+e^{y}
z کو ایک سے y^{2}+1 ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
zy^{2}+z=xy^{3}+xy+e^{y}
xy کو ایک سے y^{2}+1 ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
xy^{3}+xy+e^{y}=zy^{2}+z
اطراف ادل بدل کریں تاکہ تمام متغیر اصطلاحات بائیں ہاتھ کی جانب ہوں۔
xy^{3}+xy=zy^{2}+z-e^{y}
e^{y} کو دونوں طرف سے منہا کریں۔
\left(y^{3}+y\right)x=zy^{2}+z-e^{y}
x پر مشتمل تمام اصطلاحات کو یکجا کریں۔
\frac{\left(y^{3}+y\right)x}{y^{3}+y}=\frac{zy^{2}+z-e^{y}}{y^{3}+y}
y^{3}+y سے دونوں اطراف کو تقسیم کریں۔
x=\frac{zy^{2}+z-e^{y}}{y^{3}+y}
y^{3}+y سے تقسیم کرنا y^{3}+y سے ضرب کو کالعدم کرتا ہے۔
x=\frac{zy^{2}+z-e^{y}}{y\left(y^{2}+1\right)}
zy^{2}+z-e^{y} کو y^{3}+y سے تقسیم کریں۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}