اہم مواد پر چھوڑ دیں
Math Solver will be retired on July 7, 2025. Solve math equations with Math Assistant in OneNote to help you reach solutions quickly.
عنصر
Tick mark Image
جائزہ ليں
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

a+b=-4 ab=1\left(-12\right)=-12
گروپنگ کرکے اظہار فیکٹر کریں۔ پہلے، اظہار x^{2}+ax+bx-12 کے طور پر دوبارہ لکھنے کی ضرورت ہے۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
1,-12 2,-6 3,-4
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b منفی ہے، منفی عدد میں مثبت سے زیادہ مطلق قدر ہے۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل -12 ہوتا ہے۔
1-12=-11 2-6=-4 3-4=-1
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-6 b=2
حل ایک جوڑا ہے جو میزان -4 دیتا ہے۔
\left(x^{2}-6x\right)+\left(2x-12\right)
x^{2}-4x-12 کو بطور \left(x^{2}-6x\right)+\left(2x-12\right) دوبارہ تحریر کریں۔
x\left(x-6\right)+2\left(x-6\right)
پہلے گروپ میں x اور دوسرے میں 2 اجزائے ضربی میں تقسیم کریں۔
\left(x-6\right)\left(x+2\right)
عام اصطلاح x-6 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
x^{2}-4x-12=0
دو درجی متعدد رقمی کو استحالہ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) کا استعمال کر کے اجزائے ضربی میں تبدیل کیا جا سکتا ہے، جہاں x_{1} اور x_{2} دو درجی مساوات ax^{2}+bx+c=0 کے حل ہیں۔
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-12\right)}}{2}
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-12\right)}}{2}
مربع -4۔
x=\frac{-\left(-4\right)±\sqrt{16+48}}{2}
-4 کو -12 مرتبہ ضرب دیں۔
x=\frac{-\left(-4\right)±\sqrt{64}}{2}
16 کو 48 میں شامل کریں۔
x=\frac{-\left(-4\right)±8}{2}
64 کا جذر لیں۔
x=\frac{4±8}{2}
-4 کا مُخالف 4 ہے۔
x=\frac{12}{2}
جب ± جمع ہو تو اب مساوات x=\frac{4±8}{2} کو حل کریں۔ 4 کو 8 میں شامل کریں۔
x=6
12 کو 2 سے تقسیم کریں۔
x=-\frac{4}{2}
جب ± منفی ہو تو اب مساوات x=\frac{4±8}{2} کو حل کریں۔ 8 کو 4 میں سے منہا کریں۔
x=-2
-4 کو 2 سے تقسیم کریں۔
x^{2}-4x-12=\left(x-6\right)\left(x-\left(-2\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) کا استعمال کر کے اصل اظہار کو اجزائے ضربی میں بدلیں۔ x_{1} کے متبادل 6 اور x_{2} کے متبادل -2 رکھیں۔
x^{2}-4x-12=\left(x-6\right)\left(x+2\right)
p-\left(-q\right) سے p+q کے فارم کے تمام اظہارات کو آسان بنائیں۔