اہم مواد پر چھوڑ دیں
x کے لئے حل کریں
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

x-\frac{6x-15}{x-2}=0
\frac{6x-15}{x-2} کو دونوں طرف سے منہا کریں۔
\frac{x\left(x-2\right)}{x-2}-\frac{6x-15}{x-2}=0
اظہارات شامل یا منہا کرنے کے لئے، ان کے ایک جیسے ڈینومینیٹرز بنانے کے لئے ان میں توسیع کریں۔ x کو \frac{x-2}{x-2} مرتبہ ضرب دیں۔
\frac{x\left(x-2\right)-\left(6x-15\right)}{x-2}=0
چونکہ \frac{x\left(x-2\right)}{x-2} اور \frac{6x-15}{x-2} کا نسب نما یکساں ہے، انہیں ان کے شمار کنندگان کے ذریعے تفریق کرکے تفریق کریں۔
\frac{x^{2}-2x-6x+15}{x-2}=0
x\left(x-2\right)-\left(6x-15\right) میں ضرب دیں۔
\frac{x^{2}-8x+15}{x-2}=0
x^{2}-2x-6x+15 میں اصطلاح کی طرح یکجا کریں۔
x^{2}-8x+15=0
جبکہ زیرو کے ساتھ تقسیم واضح نہیں کی گئی ہے تو متغیرہ x 2 کے مساوی نہیں ہو سکتا۔ x-2 سے مساوات کی دونوں اطراف کو ضرب دیں۔
a+b=-8 ab=15
مساوات حل کرنے کیلئے، فیکٹر x^{2}-8x+15 فالمولہ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) استعمال کر رہا ہے۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
-1,-15 -3,-5
چونکہ ab مثبت ہے، a اور b کی علامت یکساں ہے۔ چونکہ a+b منفی ہے، a اور b بھی منفی ہیں۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل 15 ہوتا ہے۔
-1-15=-16 -3-5=-8
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-5 b=-3
حل ایک جوڑا ہے جو میزان -8 دیتا ہے۔
\left(x-5\right)\left(x-3\right)
حاصل شدہ اقدار کا استعمال کر کے فیکٹر شدہ اظہار \left(x+a\right)\left(x+b\right) دوبارہ لکھیں۔
x=5 x=3
مساوات کا حل تلاش کرنے کیلئے، x-5=0 اور x-3=0 حل کریں۔
x-\frac{6x-15}{x-2}=0
\frac{6x-15}{x-2} کو دونوں طرف سے منہا کریں۔
\frac{x\left(x-2\right)}{x-2}-\frac{6x-15}{x-2}=0
اظہارات شامل یا منہا کرنے کے لئے، ان کے ایک جیسے ڈینومینیٹرز بنانے کے لئے ان میں توسیع کریں۔ x کو \frac{x-2}{x-2} مرتبہ ضرب دیں۔
\frac{x\left(x-2\right)-\left(6x-15\right)}{x-2}=0
چونکہ \frac{x\left(x-2\right)}{x-2} اور \frac{6x-15}{x-2} کا نسب نما یکساں ہے، انہیں ان کے شمار کنندگان کے ذریعے تفریق کرکے تفریق کریں۔
\frac{x^{2}-2x-6x+15}{x-2}=0
x\left(x-2\right)-\left(6x-15\right) میں ضرب دیں۔
\frac{x^{2}-8x+15}{x-2}=0
x^{2}-2x-6x+15 میں اصطلاح کی طرح یکجا کریں۔
x^{2}-8x+15=0
جبکہ زیرو کے ساتھ تقسیم واضح نہیں کی گئی ہے تو متغیرہ x 2 کے مساوی نہیں ہو سکتا۔ x-2 سے مساوات کی دونوں اطراف کو ضرب دیں۔
a+b=-8 ab=1\times 15=15
مساوات حل کرنے کیلئے، گروپنگ کرکے بائیں جانب فیکٹر کریں۔ پہلے، بائیں جانب کو x^{2}+ax+bx+15 بطور دوبارہ لکھنا ہو گا۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
-1,-15 -3,-5
چونکہ ab مثبت ہے، a اور b کی علامت یکساں ہے۔ چونکہ a+b منفی ہے، a اور b بھی منفی ہیں۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل 15 ہوتا ہے۔
-1-15=-16 -3-5=-8
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-5 b=-3
حل ایک جوڑا ہے جو میزان -8 دیتا ہے۔
\left(x^{2}-5x\right)+\left(-3x+15\right)
x^{2}-8x+15 کو بطور \left(x^{2}-5x\right)+\left(-3x+15\right) دوبارہ تحریر کریں۔
x\left(x-5\right)-3\left(x-5\right)
پہلے گروپ میں x اور دوسرے میں -3 اجزائے ضربی میں تقسیم کریں۔
\left(x-5\right)\left(x-3\right)
عام اصطلاح x-5 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
x=5 x=3
مساوات کا حل تلاش کرنے کیلئے، x-5=0 اور x-3=0 حل کریں۔
x-\frac{6x-15}{x-2}=0
\frac{6x-15}{x-2} کو دونوں طرف سے منہا کریں۔
\frac{x\left(x-2\right)}{x-2}-\frac{6x-15}{x-2}=0
اظہارات شامل یا منہا کرنے کے لئے، ان کے ایک جیسے ڈینومینیٹرز بنانے کے لئے ان میں توسیع کریں۔ x کو \frac{x-2}{x-2} مرتبہ ضرب دیں۔
\frac{x\left(x-2\right)-\left(6x-15\right)}{x-2}=0
چونکہ \frac{x\left(x-2\right)}{x-2} اور \frac{6x-15}{x-2} کا نسب نما یکساں ہے، انہیں ان کے شمار کنندگان کے ذریعے تفریق کرکے تفریق کریں۔
\frac{x^{2}-2x-6x+15}{x-2}=0
x\left(x-2\right)-\left(6x-15\right) میں ضرب دیں۔
\frac{x^{2}-8x+15}{x-2}=0
x^{2}-2x-6x+15 میں اصطلاح کی طرح یکجا کریں۔
x^{2}-8x+15=0
جبکہ زیرو کے ساتھ تقسیم واضح نہیں کی گئی ہے تو متغیرہ x 2 کے مساوی نہیں ہو سکتا۔ x-2 سے مساوات کی دونوں اطراف کو ضرب دیں۔
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 15}}{2}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے 1 کو، b کے لئے -8 کو اور c کے لئے 15 کو متبادل کریں۔
x=\frac{-\left(-8\right)±\sqrt{64-4\times 15}}{2}
مربع -8۔
x=\frac{-\left(-8\right)±\sqrt{64-60}}{2}
-4 کو 15 مرتبہ ضرب دیں۔
x=\frac{-\left(-8\right)±\sqrt{4}}{2}
64 کو -60 میں شامل کریں۔
x=\frac{-\left(-8\right)±2}{2}
4 کا جذر لیں۔
x=\frac{8±2}{2}
-8 کا مُخالف 8 ہے۔
x=\frac{10}{2}
جب ± جمع ہو تو اب مساوات x=\frac{8±2}{2} کو حل کریں۔ 8 کو 2 میں شامل کریں۔
x=5
10 کو 2 سے تقسیم کریں۔
x=\frac{6}{2}
جب ± منفی ہو تو اب مساوات x=\frac{8±2}{2} کو حل کریں۔ 2 کو 8 میں سے منہا کریں۔
x=3
6 کو 2 سے تقسیم کریں۔
x=5 x=3
مساوات اب حل ہو گئی ہے۔
x-\frac{6x-15}{x-2}=0
\frac{6x-15}{x-2} کو دونوں طرف سے منہا کریں۔
\frac{x\left(x-2\right)}{x-2}-\frac{6x-15}{x-2}=0
اظہارات شامل یا منہا کرنے کے لئے، ان کے ایک جیسے ڈینومینیٹرز بنانے کے لئے ان میں توسیع کریں۔ x کو \frac{x-2}{x-2} مرتبہ ضرب دیں۔
\frac{x\left(x-2\right)-\left(6x-15\right)}{x-2}=0
چونکہ \frac{x\left(x-2\right)}{x-2} اور \frac{6x-15}{x-2} کا نسب نما یکساں ہے، انہیں ان کے شمار کنندگان کے ذریعے تفریق کرکے تفریق کریں۔
\frac{x^{2}-2x-6x+15}{x-2}=0
x\left(x-2\right)-\left(6x-15\right) میں ضرب دیں۔
\frac{x^{2}-8x+15}{x-2}=0
x^{2}-2x-6x+15 میں اصطلاح کی طرح یکجا کریں۔
x^{2}-8x+15=0
جبکہ زیرو کے ساتھ تقسیم واضح نہیں کی گئی ہے تو متغیرہ x 2 کے مساوی نہیں ہو سکتا۔ x-2 سے مساوات کی دونوں اطراف کو ضرب دیں۔
x^{2}-8x=-15
15 کو دونوں طرف سے منہا کریں۔ کوئی بھی چیز صفر میں سے تفریق ہوکر اپنا نفی دیتی ہے۔
x^{2}-8x+\left(-4\right)^{2}=-15+\left(-4\right)^{2}
2 سے -4 حاصل کرنے کے لیے، -8 کو x اصطلاح کے کو ایفیشنٹ سے تقسیم کریں۔ پھر -4 کے مربع کو مساوات کی دونوں جانب جمع کریں۔ یہ مرحلہ مساوات کی بائیں ہاتھ کی جانب کو ایک مکمل مربع بناتا ہے۔
x^{2}-8x+16=-15+16
مربع -4۔
x^{2}-8x+16=1
-15 کو 16 میں شامل کریں۔
\left(x-4\right)^{2}=1
فیکٹر x^{2}-8x+16۔ عمومی طور پر جب x^{2}+bx+c ایک کامل مربع ہوگا تو اسے ہمیشہ \left(x+\frac{b}{2}\right)^{2} کی طرح فیکٹر کیا جا سکتا ہے۔
\sqrt{\left(x-4\right)^{2}}=\sqrt{1}
مساوات کی دونوں اطراف کا جذر لیں۔
x-4=1 x-4=-1
سادہ کریں۔
x=5 x=3
مساوات کے دونوں اطراف سے 4 کو شامل کریں۔