اہم مواد پر چھوڑ دیں
عنصر
Tick mark Image
جائزہ ليں
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

x\left(1-2x\right)
اجزائے ضربی میں تقسیم کریں x۔
-2x^{2}+x=0
دو درجی متعدد رقمی کو استحالہ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) کا استعمال کر کے اجزائے ضربی میں تبدیل کیا جا سکتا ہے، جہاں x_{1} اور x_{2} دو درجی مساوات ax^{2}+bx+c=0 کے حل ہیں۔
x=\frac{-1±\sqrt{1^{2}}}{2\left(-2\right)}
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x=\frac{-1±1}{2\left(-2\right)}
1^{2} کا جذر لیں۔
x=\frac{-1±1}{-4}
2 کو -2 مرتبہ ضرب دیں۔
x=\frac{0}{-4}
جب ± جمع ہو تو اب مساوات x=\frac{-1±1}{-4} کو حل کریں۔ -1 کو 1 میں شامل کریں۔
x=0
0 کو -4 سے تقسیم کریں۔
x=-\frac{2}{-4}
جب ± منفی ہو تو اب مساوات x=\frac{-1±1}{-4} کو حل کریں۔ 1 کو -1 میں سے منہا کریں۔
x=\frac{1}{2}
2 کو اخذ اور منسوخ کرتے ہوئے \frac{-2}{-4} کسر کو کم تر اصطلاحات تک گھٹائیں۔
-2x^{2}+x=-2x\left(x-\frac{1}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) کا استعمال کر کے اصل اظہار کو اجزائے ضربی میں بدلیں۔ x_{1} کے متبادل 0 اور x_{2} کے متبادل \frac{1}{2} رکھیں۔
-2x^{2}+x=-2x\times \frac{-2x+1}{-2}
ایک مشترک ڈینومینیٹر معلوم کر کے اور نیومیریٹر کو منہا کر کے \frac{1}{2} کو x میں سے منہا کریں۔ اور پھر کسر کو اگر ممکن ہو تو اس کی کم ترین اصطلاحات میں سے کم کریں۔
-2x^{2}+x=x\left(-2x+1\right)
-2 اور -2 میں عظیم عام عامل 2 کو منسوخ کریں۔