x کے لئے حل کریں
x\in \mathrm{R}
مخطط
حصہ
کلپ بورڈ پر کاپی کیا گیا
x^{2}-5x+9=0
عدم مساوات کو حل کرنے کے لیے، بائیں ہاتھ کی جانب کو حل کریں۔ دو درجی متعدد رقمی کو استحالہ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) کا استعمال کر کے اجزائے ضربی میں تبدیل کیا جا سکتا ہے، جہاں x_{1} اور x_{2} دو درجی مساوات ax^{2}+bx+c=0 کے حل ہیں۔
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 1\times 9}}{2}
ax^{2}+bx+c=0 کی تمام مساوات کو مربعى فارمولا: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کا استعمال کرکے حل کیا جاسکتا ہے۔ مربعى فارمولا میں a کے لیے متبادل 1، b کے لیے متبادل -5، اور c کے لیے متبادل 9 ہے۔
x=\frac{5±\sqrt{-11}}{2}
حسابات کریں۔
0^{2}-5\times 0+9=9
چونکہ اصل قطعہ میں منفی عدد کا جذر المربع واضح نہیں کیا گیا ہے، یہاں کوئی حل نہیں ہیں۔ ترکیب x^{2}-5x+9 کی کسی بھی x کے لیے ایک ہی علامت ہے۔ علامت کا تعین کرنے کے لیے، x=0 کے لیے ترکیب کی قدر کا حساب لگائیں۔
x\in \mathrm{R}
ترکیب x^{2}-5x+9 کی قدر ہمیشہ مثبت ہوتی ہے۔ عدم مساوات x\in \mathrm{R} کے لیے رکھی جاتی ہے۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}