اہم مواد پر چھوڑ دیں
عنصر
Tick mark Image
جائزہ ليں
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

a+b=-2 ab=1\left(-8\right)=-8
گروپنگ کرکے اظہار فیکٹر کریں۔ پہلے، اظہار x^{2}+ax+bx-8 کے طور پر دوبارہ لکھنے کی ضرورت ہے۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
1,-8 2,-4
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b منفی ہے، منفی عدد میں مثبت سے زیادہ مطلق قدر ہے۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل -8 ہوتا ہے۔
1-8=-7 2-4=-2
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-4 b=2
حل ایک جوڑا ہے جو میزان -2 دیتا ہے۔
\left(x^{2}-4x\right)+\left(2x-8\right)
x^{2}-2x-8 کو بطور \left(x^{2}-4x\right)+\left(2x-8\right) دوبارہ تحریر کریں۔
x\left(x-4\right)+2\left(x-4\right)
پہلے گروپ میں x اور دوسرے میں 2 اجزائے ضربی میں تقسیم کریں۔
\left(x-4\right)\left(x+2\right)
عام اصطلاح x-4 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
x^{2}-2x-8=0
دو درجی متعدد رقمی کو استحالہ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) کا استعمال کر کے اجزائے ضربی میں تبدیل کیا جا سکتا ہے، جہاں x_{1} اور x_{2} دو درجی مساوات ax^{2}+bx+c=0 کے حل ہیں۔
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-8\right)}}{2}
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-8\right)}}{2}
مربع -2۔
x=\frac{-\left(-2\right)±\sqrt{4+32}}{2}
-4 کو -8 مرتبہ ضرب دیں۔
x=\frac{-\left(-2\right)±\sqrt{36}}{2}
4 کو 32 میں شامل کریں۔
x=\frac{-\left(-2\right)±6}{2}
36 کا جذر لیں۔
x=\frac{2±6}{2}
-2 کا مُخالف 2 ہے۔
x=\frac{8}{2}
جب ± جمع ہو تو اب مساوات x=\frac{2±6}{2} کو حل کریں۔ 2 کو 6 میں شامل کریں۔
x=4
8 کو 2 سے تقسیم کریں۔
x=-\frac{4}{2}
جب ± منفی ہو تو اب مساوات x=\frac{2±6}{2} کو حل کریں۔ 6 کو 2 میں سے منہا کریں۔
x=-2
-4 کو 2 سے تقسیم کریں۔
x^{2}-2x-8=\left(x-4\right)\left(x-\left(-2\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) کا استعمال کر کے اصل اظہار کو اجزائے ضربی میں بدلیں۔ x_{1} کے متبادل 4 اور x_{2} کے متبادل -2 رکھیں۔
x^{2}-2x-8=\left(x-4\right)\left(x+2\right)
p-\left(-q\right) سے p+q کے فارم کے تمام اظہارات کو آسان بنائیں۔