اہم مواد پر چھوڑ دیں
x کے لئے حل کریں
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

x^{2}-4x=12
4x کو دونوں طرف سے منہا کریں۔
x^{2}-4x-12=0
12 کو دونوں طرف سے منہا کریں۔
a+b=-4 ab=-12
مساوات حل کرنے کیلئے، فیکٹر x^{2}-4x-12 فالمولہ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) استعمال کر رہا ہے۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
1,-12 2,-6 3,-4
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b منفی ہے، منفی عدد میں مثبت سے زیادہ مطلق قدر ہے۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل -12 ہوتا ہے۔
1-12=-11 2-6=-4 3-4=-1
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-6 b=2
حل ایک جوڑا ہے جو میزان -4 دیتا ہے۔
\left(x-6\right)\left(x+2\right)
حاصل شدہ اقدار کا استعمال کر کے فیکٹر شدہ اظہار \left(x+a\right)\left(x+b\right) دوبارہ لکھیں۔
x=6 x=-2
مساوات کا حل تلاش کرنے کیلئے، x-6=0 اور x+2=0 حل کریں۔
x^{2}-4x=12
4x کو دونوں طرف سے منہا کریں۔
x^{2}-4x-12=0
12 کو دونوں طرف سے منہا کریں۔
a+b=-4 ab=1\left(-12\right)=-12
مساوات حل کرنے کیلئے، گروپنگ کرکے بائیں جانب فیکٹر کریں۔ پہلے، بائیں جانب کو x^{2}+ax+bx-12 بطور دوبارہ لکھنا ہو گا۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
1,-12 2,-6 3,-4
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b منفی ہے، منفی عدد میں مثبت سے زیادہ مطلق قدر ہے۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل -12 ہوتا ہے۔
1-12=-11 2-6=-4 3-4=-1
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-6 b=2
حل ایک جوڑا ہے جو میزان -4 دیتا ہے۔
\left(x^{2}-6x\right)+\left(2x-12\right)
x^{2}-4x-12 کو بطور \left(x^{2}-6x\right)+\left(2x-12\right) دوبارہ تحریر کریں۔
x\left(x-6\right)+2\left(x-6\right)
پہلے گروپ میں x اور دوسرے میں 2 اجزائے ضربی میں تقسیم کریں۔
\left(x-6\right)\left(x+2\right)
عام اصطلاح x-6 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
x=6 x=-2
مساوات کا حل تلاش کرنے کیلئے، x-6=0 اور x+2=0 حل کریں۔
x^{2}-4x=12
4x کو دونوں طرف سے منہا کریں۔
x^{2}-4x-12=0
12 کو دونوں طرف سے منہا کریں۔
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-12\right)}}{2}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے 1 کو، b کے لئے -4 کو اور c کے لئے -12 کو متبادل کریں۔
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-12\right)}}{2}
مربع -4۔
x=\frac{-\left(-4\right)±\sqrt{16+48}}{2}
-4 کو -12 مرتبہ ضرب دیں۔
x=\frac{-\left(-4\right)±\sqrt{64}}{2}
16 کو 48 میں شامل کریں۔
x=\frac{-\left(-4\right)±8}{2}
64 کا جذر لیں۔
x=\frac{4±8}{2}
-4 کا مُخالف 4 ہے۔
x=\frac{12}{2}
جب ± جمع ہو تو اب مساوات x=\frac{4±8}{2} کو حل کریں۔ 4 کو 8 میں شامل کریں۔
x=6
12 کو 2 سے تقسیم کریں۔
x=-\frac{4}{2}
جب ± منفی ہو تو اب مساوات x=\frac{4±8}{2} کو حل کریں۔ 8 کو 4 میں سے منہا کریں۔
x=-2
-4 کو 2 سے تقسیم کریں۔
x=6 x=-2
مساوات اب حل ہو گئی ہے۔
x^{2}-4x=12
4x کو دونوں طرف سے منہا کریں۔
x^{2}-4x+\left(-2\right)^{2}=12+\left(-2\right)^{2}
2 سے -2 حاصل کرنے کے لیے، -4 کو x اصطلاح کے کو ایفیشنٹ سے تقسیم کریں۔ پھر -2 کے مربع کو مساوات کی دونوں جانب جمع کریں۔ یہ مرحلہ مساوات کی بائیں ہاتھ کی جانب کو ایک مکمل مربع بناتا ہے۔
x^{2}-4x+4=12+4
مربع -2۔
x^{2}-4x+4=16
12 کو 4 میں شامل کریں۔
\left(x-2\right)^{2}=16
فیکٹر x^{2}-4x+4۔ عمومی طور پر جب x^{2}+bx+c ایک کامل مربع ہوگا تو اسے ہمیشہ \left(x+\frac{b}{2}\right)^{2} کی طرح فیکٹر کیا جا سکتا ہے۔
\sqrt{\left(x-2\right)^{2}}=\sqrt{16}
مساوات کی دونوں اطراف کا جذر لیں۔
x-2=4 x-2=-4
سادہ کریں۔
x=6 x=-2
مساوات کے دونوں اطراف سے 2 کو شامل کریں۔