اہم مواد پر چھوڑ دیں
x کے لئے حل کریں
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

a+b=90 ab=89
مساوات حل کرنے کیلئے، فیکٹر x^{2}+90x+89 فالمولہ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) استعمال کر رہا ہے۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
a=1 b=89
چونکہ ab مثبت ہے، a اور b کی علامت یکساں ہے۔ چونکہ a+b مثبت ہے، a اور b بھی مثبت ہیں۔ اس طرح کی جوڑی ہی سسٹم کا حل ہے۔
\left(x+1\right)\left(x+89\right)
حاصل شدہ اقدار کا استعمال کر کے فیکٹر شدہ اظہار \left(x+a\right)\left(x+b\right) دوبارہ لکھیں۔
x=-1 x=-89
مساوات کا حل تلاش کرنے کیلئے، x+1=0 اور x+89=0 حل کریں۔
a+b=90 ab=1\times 89=89
مساوات حل کرنے کیلئے، گروپنگ کرکے بائیں جانب فیکٹر کریں۔ پہلے، بائیں جانب کو x^{2}+ax+bx+89 بطور دوبارہ لکھنا ہو گا۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
a=1 b=89
چونکہ ab مثبت ہے، a اور b کی علامت یکساں ہے۔ چونکہ a+b مثبت ہے، a اور b بھی مثبت ہیں۔ اس طرح کی جوڑی ہی سسٹم کا حل ہے۔
\left(x^{2}+x\right)+\left(89x+89\right)
x^{2}+90x+89 کو بطور \left(x^{2}+x\right)+\left(89x+89\right) دوبارہ تحریر کریں۔
x\left(x+1\right)+89\left(x+1\right)
پہلے گروپ میں x اور دوسرے میں 89 اجزائے ضربی میں تقسیم کریں۔
\left(x+1\right)\left(x+89\right)
عام اصطلاح x+1 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
x=-1 x=-89
مساوات کا حل تلاش کرنے کیلئے، x+1=0 اور x+89=0 حل کریں۔
x^{2}+90x+89=0
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x=\frac{-90±\sqrt{90^{2}-4\times 89}}{2}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے 1 کو، b کے لئے 90 کو اور c کے لئے 89 کو متبادل کریں۔
x=\frac{-90±\sqrt{8100-4\times 89}}{2}
مربع 90۔
x=\frac{-90±\sqrt{8100-356}}{2}
-4 کو 89 مرتبہ ضرب دیں۔
x=\frac{-90±\sqrt{7744}}{2}
8100 کو -356 میں شامل کریں۔
x=\frac{-90±88}{2}
7744 کا جذر لیں۔
x=-\frac{2}{2}
جب ± جمع ہو تو اب مساوات x=\frac{-90±88}{2} کو حل کریں۔ -90 کو 88 میں شامل کریں۔
x=-1
-2 کو 2 سے تقسیم کریں۔
x=-\frac{178}{2}
جب ± منفی ہو تو اب مساوات x=\frac{-90±88}{2} کو حل کریں۔ 88 کو -90 میں سے منہا کریں۔
x=-89
-178 کو 2 سے تقسیم کریں۔
x=-1 x=-89
مساوات اب حل ہو گئی ہے۔
x^{2}+90x+89=0
اس قسم کی مربعی قواعد مربع مکمل کرنے کے بعد حل ہوسکتی ہیں۔ مربع کو مکمل کرنے کے لیئے، مساوات کو پہلے اس شکل میں ہونا ضروری ہے x^{2}+bx=c۔
x^{2}+90x+89-89=-89
مساوات کے دونوں اطراف سے 89 منہا کریں۔
x^{2}+90x=-89
89 کے خود سے منہا کرنے پر 0 ہی بچتا ہے۔
x^{2}+90x+45^{2}=-89+45^{2}
2 سے 45 حاصل کرنے کے لیے، 90 کو x اصطلاح کے کو ایفیشنٹ سے تقسیم کریں۔ پھر 45 کے مربع کو مساوات کی دونوں جانب جمع کریں۔ یہ مرحلہ مساوات کی بائیں ہاتھ کی جانب کو ایک مکمل مربع بناتا ہے۔
x^{2}+90x+2025=-89+2025
مربع 45۔
x^{2}+90x+2025=1936
-89 کو 2025 میں شامل کریں۔
\left(x+45\right)^{2}=1936
فیکٹر x^{2}+90x+2025۔ عمومی طور پر جب x^{2}+bx+c ایک کامل مربع ہوگا تو اسے ہمیشہ \left(x+\frac{b}{2}\right)^{2} کی طرح فیکٹر کیا جا سکتا ہے۔
\sqrt{\left(x+45\right)^{2}}=\sqrt{1936}
مساوات کی دونوں اطراف کا جذر لیں۔
x+45=44 x+45=-44
سادہ کریں۔
x=-1 x=-89
مساوات کے دونوں اطراف سے 45 منہا کریں۔