اہم مواد پر چھوڑ دیں
x کے لئے حل کریں
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

x^{2}+8x-48=0
48 کو دونوں طرف سے منہا کریں۔
a+b=8 ab=-48
مساوات حل کرنے کیلئے، فیکٹر x^{2}+8x-48 فالمولہ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) استعمال کر رہا ہے۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
-1,48 -2,24 -3,16 -4,12 -6,8
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b مثبت ہے، مثبت عدد میں منفی سے زیادہ مطلق قدر ہے۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل -48 ہوتا ہے۔
-1+48=47 -2+24=22 -3+16=13 -4+12=8 -6+8=2
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-4 b=12
حل ایک جوڑا ہے جو میزان 8 دیتا ہے۔
\left(x-4\right)\left(x+12\right)
حاصل شدہ اقدار کا استعمال کر کے فیکٹر شدہ اظہار \left(x+a\right)\left(x+b\right) دوبارہ لکھیں۔
x=4 x=-12
مساوات کا حل تلاش کرنے کیلئے، x-4=0 اور x+12=0 حل کریں۔
x^{2}+8x-48=0
48 کو دونوں طرف سے منہا کریں۔
a+b=8 ab=1\left(-48\right)=-48
مساوات حل کرنے کیلئے، گروپنگ کرکے بائیں جانب فیکٹر کریں۔ پہلے، بائیں جانب کو x^{2}+ax+bx-48 بطور دوبارہ لکھنا ہو گا۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
-1,48 -2,24 -3,16 -4,12 -6,8
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b مثبت ہے، مثبت عدد میں منفی سے زیادہ مطلق قدر ہے۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل -48 ہوتا ہے۔
-1+48=47 -2+24=22 -3+16=13 -4+12=8 -6+8=2
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-4 b=12
حل ایک جوڑا ہے جو میزان 8 دیتا ہے۔
\left(x^{2}-4x\right)+\left(12x-48\right)
x^{2}+8x-48 کو بطور \left(x^{2}-4x\right)+\left(12x-48\right) دوبارہ تحریر کریں۔
x\left(x-4\right)+12\left(x-4\right)
پہلے گروپ میں x اور دوسرے میں 12 اجزائے ضربی میں تقسیم کریں۔
\left(x-4\right)\left(x+12\right)
عام اصطلاح x-4 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
x=4 x=-12
مساوات کا حل تلاش کرنے کیلئے، x-4=0 اور x+12=0 حل کریں۔
x^{2}+8x=48
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x^{2}+8x-48=48-48
مساوات کے دونوں اطراف سے 48 منہا کریں۔
x^{2}+8x-48=0
48 کے خود سے منہا کرنے پر 0 ہی بچتا ہے۔
x=\frac{-8±\sqrt{8^{2}-4\left(-48\right)}}{2}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے 1 کو، b کے لئے 8 کو اور c کے لئے -48 کو متبادل کریں۔
x=\frac{-8±\sqrt{64-4\left(-48\right)}}{2}
مربع 8۔
x=\frac{-8±\sqrt{64+192}}{2}
-4 کو -48 مرتبہ ضرب دیں۔
x=\frac{-8±\sqrt{256}}{2}
64 کو 192 میں شامل کریں۔
x=\frac{-8±16}{2}
256 کا جذر لیں۔
x=\frac{8}{2}
جب ± جمع ہو تو اب مساوات x=\frac{-8±16}{2} کو حل کریں۔ -8 کو 16 میں شامل کریں۔
x=4
8 کو 2 سے تقسیم کریں۔
x=-\frac{24}{2}
جب ± منفی ہو تو اب مساوات x=\frac{-8±16}{2} کو حل کریں۔ 16 کو -8 میں سے منہا کریں۔
x=-12
-24 کو 2 سے تقسیم کریں۔
x=4 x=-12
مساوات اب حل ہو گئی ہے۔
x^{2}+8x=48
اس قسم کی مربعی قواعد مربع مکمل کرنے کے بعد حل ہوسکتی ہیں۔ مربع کو مکمل کرنے کے لیئے، مساوات کو پہلے اس شکل میں ہونا ضروری ہے x^{2}+bx=c۔
x^{2}+8x+4^{2}=48+4^{2}
2 سے 4 حاصل کرنے کے لیے، 8 کو x اصطلاح کے کو ایفیشنٹ سے تقسیم کریں۔ پھر 4 کے مربع کو مساوات کی دونوں جانب جمع کریں۔ یہ مرحلہ مساوات کی بائیں ہاتھ کی جانب کو ایک مکمل مربع بناتا ہے۔
x^{2}+8x+16=48+16
مربع 4۔
x^{2}+8x+16=64
48 کو 16 میں شامل کریں۔
\left(x+4\right)^{2}=64
فیکٹر x^{2}+8x+16۔ عمومی طور پر جب x^{2}+bx+c ایک کامل مربع ہوگا تو اسے ہمیشہ \left(x+\frac{b}{2}\right)^{2} کی طرح فیکٹر کیا جا سکتا ہے۔
\sqrt{\left(x+4\right)^{2}}=\sqrt{64}
مساوات کی دونوں اطراف کا جذر لیں۔
x+4=8 x+4=-8
سادہ کریں۔
x=4 x=-12
مساوات کے دونوں اطراف سے 4 منہا کریں۔