x کے لئے حل کریں
x=-4
x=-3
مخطط
حصہ
کلپ بورڈ پر کاپی کیا گیا
a+b=7 ab=12
مساوات حل کرنے کیلئے، فیکٹر x^{2}+7x+12 فالمولہ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) استعمال کر رہا ہے۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
1,12 2,6 3,4
چونکہ ab مثبت ہے، a اور b کی علامت یکساں ہے۔ چونکہ a+b مثبت ہے، a اور b بھی مثبت ہیں۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل 12 ہوتا ہے۔
1+12=13 2+6=8 3+4=7
ہر جوڑے کی رقم کا حساب لگائیں۔
a=3 b=4
حل ایک جوڑا ہے جو میزان 7 دیتا ہے۔
\left(x+3\right)\left(x+4\right)
حاصل شدہ اقدار کا استعمال کر کے فیکٹر شدہ اظہار \left(x+a\right)\left(x+b\right) دوبارہ لکھیں۔
x=-3 x=-4
مساوات کا حل تلاش کرنے کیلئے، x+3=0 اور x+4=0 حل کریں۔
a+b=7 ab=1\times 12=12
مساوات حل کرنے کیلئے، گروپنگ کرکے بائیں جانب فیکٹر کریں۔ پہلے، بائیں جانب کو x^{2}+ax+bx+12 بطور دوبارہ لکھنا ہو گا۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
1,12 2,6 3,4
چونکہ ab مثبت ہے، a اور b کی علامت یکساں ہے۔ چونکہ a+b مثبت ہے، a اور b بھی مثبت ہیں۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل 12 ہوتا ہے۔
1+12=13 2+6=8 3+4=7
ہر جوڑے کی رقم کا حساب لگائیں۔
a=3 b=4
حل ایک جوڑا ہے جو میزان 7 دیتا ہے۔
\left(x^{2}+3x\right)+\left(4x+12\right)
x^{2}+7x+12 کو بطور \left(x^{2}+3x\right)+\left(4x+12\right) دوبارہ تحریر کریں۔
x\left(x+3\right)+4\left(x+3\right)
پہلے گروپ میں x اور دوسرے میں 4 اجزائے ضربی میں تقسیم کریں۔
\left(x+3\right)\left(x+4\right)
عام اصطلاح x+3 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
x=-3 x=-4
مساوات کا حل تلاش کرنے کیلئے، x+3=0 اور x+4=0 حل کریں۔
x^{2}+7x+12=0
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x=\frac{-7±\sqrt{7^{2}-4\times 12}}{2}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے 1 کو، b کے لئے 7 کو اور c کے لئے 12 کو متبادل کریں۔
x=\frac{-7±\sqrt{49-4\times 12}}{2}
مربع 7۔
x=\frac{-7±\sqrt{49-48}}{2}
-4 کو 12 مرتبہ ضرب دیں۔
x=\frac{-7±\sqrt{1}}{2}
49 کو -48 میں شامل کریں۔
x=\frac{-7±1}{2}
1 کا جذر لیں۔
x=-\frac{6}{2}
جب ± جمع ہو تو اب مساوات x=\frac{-7±1}{2} کو حل کریں۔ -7 کو 1 میں شامل کریں۔
x=-3
-6 کو 2 سے تقسیم کریں۔
x=-\frac{8}{2}
جب ± منفی ہو تو اب مساوات x=\frac{-7±1}{2} کو حل کریں۔ 1 کو -7 میں سے منہا کریں۔
x=-4
-8 کو 2 سے تقسیم کریں۔
x=-3 x=-4
مساوات اب حل ہو گئی ہے۔
x^{2}+7x+12=0
اس قسم کی مربعی قواعد مربع مکمل کرنے کے بعد حل ہوسکتی ہیں۔ مربع کو مکمل کرنے کے لیئے، مساوات کو پہلے اس شکل میں ہونا ضروری ہے x^{2}+bx=c۔
x^{2}+7x+12-12=-12
مساوات کے دونوں اطراف سے 12 منہا کریں۔
x^{2}+7x=-12
12 کے خود سے منہا کرنے پر 0 ہی بچتا ہے۔
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=-12+\left(\frac{7}{2}\right)^{2}
2 سے \frac{7}{2} حاصل کرنے کے لیے، 7 کو x اصطلاح کے کو ایفیشنٹ سے تقسیم کریں۔ پھر \frac{7}{2} کے مربع کو مساوات کی دونوں جانب جمع کریں۔ یہ مرحلہ مساوات کی بائیں ہاتھ کی جانب کو ایک مکمل مربع بناتا ہے۔
x^{2}+7x+\frac{49}{4}=-12+\frac{49}{4}
کسر کا نیومیریٹر اور ڈینومینیٹر دونوں پر مربع لگا کر \frac{7}{2} کو مربع کریں۔
x^{2}+7x+\frac{49}{4}=\frac{1}{4}
-12 کو \frac{49}{4} میں شامل کریں۔
\left(x+\frac{7}{2}\right)^{2}=\frac{1}{4}
عامل x^{2}+7x+\frac{49}{4}۔ عام طور پر، جب x^{2}+bx+c ایک کامل مربع ہوتا ہے تو، یہ ہمیشہ اس طرح سے عامل ہوسکتا ہے \left(x+\frac{b}{2}\right)^{2}۔
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
مساوات کی دونوں اطراف کا جذر لیں۔
x+\frac{7}{2}=\frac{1}{2} x+\frac{7}{2}=-\frac{1}{2}
سادہ کریں۔
x=-3 x=-4
مساوات کے دونوں اطراف سے \frac{7}{2} منہا کریں۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}