اہم مواد پر چھوڑ دیں
عنصر
Tick mark Image
جائزہ ليں
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

a+b=6 ab=1\times 8=8
گروپنگ کرکے اظہار فیکٹر کریں۔ پہلے، اظہار x^{2}+ax+bx+8 کے طور پر دوبارہ لکھنے کی ضرورت ہے۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
1,8 2,4
چونکہ ab مثبت ہے، a اور b کی علامت یکساں ہے۔ چونکہ a+b مثبت ہے، a اور b بھی مثبت ہیں۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل 8 ہوتا ہے۔
1+8=9 2+4=6
ہر جوڑے کی رقم کا حساب لگائیں۔
a=2 b=4
حل ایک جوڑا ہے جو میزان 6 دیتا ہے۔
\left(x^{2}+2x\right)+\left(4x+8\right)
x^{2}+6x+8 کو بطور \left(x^{2}+2x\right)+\left(4x+8\right) دوبارہ تحریر کریں۔
x\left(x+2\right)+4\left(x+2\right)
پہلے گروپ میں x اور دوسرے میں 4 اجزائے ضربی میں تقسیم کریں۔
\left(x+2\right)\left(x+4\right)
عام اصطلاح x+2 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
x^{2}+6x+8=0
دو درجی متعدد رقمی کو استحالہ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) کا استعمال کر کے اجزائے ضربی میں تبدیل کیا جا سکتا ہے، جہاں x_{1} اور x_{2} دو درجی مساوات ax^{2}+bx+c=0 کے حل ہیں۔
x=\frac{-6±\sqrt{6^{2}-4\times 8}}{2}
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x=\frac{-6±\sqrt{36-4\times 8}}{2}
مربع 6۔
x=\frac{-6±\sqrt{36-32}}{2}
-4 کو 8 مرتبہ ضرب دیں۔
x=\frac{-6±\sqrt{4}}{2}
36 کو -32 میں شامل کریں۔
x=\frac{-6±2}{2}
4 کا جذر لیں۔
x=-\frac{4}{2}
جب ± جمع ہو تو اب مساوات x=\frac{-6±2}{2} کو حل کریں۔ -6 کو 2 میں شامل کریں۔
x=-2
-4 کو 2 سے تقسیم کریں۔
x=-\frac{8}{2}
جب ± منفی ہو تو اب مساوات x=\frac{-6±2}{2} کو حل کریں۔ 2 کو -6 میں سے منہا کریں۔
x=-4
-8 کو 2 سے تقسیم کریں۔
x^{2}+6x+8=\left(x-\left(-2\right)\right)\left(x-\left(-4\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) کا استعمال کر کے اصل اظہار کو اجزائے ضربی میں بدلیں۔ x_{1} کے متبادل -2 اور x_{2} کے متبادل -4 رکھیں۔
x^{2}+6x+8=\left(x+2\right)\left(x+4\right)
p-\left(-q\right) سے p+q کے فارم کے تمام اظہارات کو آسان بنائیں۔