x کے لئے حل کریں
x=-12
x=7
مخطط
حصہ
کلپ بورڈ پر کاپی کیا گیا
x^{2}+5x-84=0
84 کو دونوں طرف سے منہا کریں۔
a+b=5 ab=-84
مساوات حل کرنے کیلئے، فیکٹر x^{2}+5x-84 فالمولہ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) استعمال کر رہا ہے۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
-1,84 -2,42 -3,28 -4,21 -6,14 -7,12
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b مثبت ہے، مثبت عدد میں منفی سے زیادہ مطلق قدر ہے۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل -84 ہوتا ہے۔
-1+84=83 -2+42=40 -3+28=25 -4+21=17 -6+14=8 -7+12=5
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-7 b=12
حل ایک جوڑا ہے جو میزان 5 دیتا ہے۔
\left(x-7\right)\left(x+12\right)
حاصل شدہ اقدار کا استعمال کر کے فیکٹر شدہ اظہار \left(x+a\right)\left(x+b\right) دوبارہ لکھیں۔
x=7 x=-12
مساوات کا حل تلاش کرنے کیلئے، x-7=0 اور x+12=0 حل کریں۔
x^{2}+5x-84=0
84 کو دونوں طرف سے منہا کریں۔
a+b=5 ab=1\left(-84\right)=-84
مساوات حل کرنے کیلئے، گروپنگ کرکے بائیں جانب فیکٹر کریں۔ پہلے، بائیں جانب کو x^{2}+ax+bx-84 بطور دوبارہ لکھنا ہو گا۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
-1,84 -2,42 -3,28 -4,21 -6,14 -7,12
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b مثبت ہے، مثبت عدد میں منفی سے زیادہ مطلق قدر ہے۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل -84 ہوتا ہے۔
-1+84=83 -2+42=40 -3+28=25 -4+21=17 -6+14=8 -7+12=5
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-7 b=12
حل ایک جوڑا ہے جو میزان 5 دیتا ہے۔
\left(x^{2}-7x\right)+\left(12x-84\right)
x^{2}+5x-84 کو بطور \left(x^{2}-7x\right)+\left(12x-84\right) دوبارہ تحریر کریں۔
x\left(x-7\right)+12\left(x-7\right)
پہلے گروپ میں x اور دوسرے میں 12 اجزائے ضربی میں تقسیم کریں۔
\left(x-7\right)\left(x+12\right)
عام اصطلاح x-7 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
x=7 x=-12
مساوات کا حل تلاش کرنے کیلئے، x-7=0 اور x+12=0 حل کریں۔
x^{2}+5x=84
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x^{2}+5x-84=84-84
مساوات کے دونوں اطراف سے 84 منہا کریں۔
x^{2}+5x-84=0
84 کے خود سے منہا کرنے پر 0 ہی بچتا ہے۔
x=\frac{-5±\sqrt{5^{2}-4\left(-84\right)}}{2}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے 1 کو، b کے لئے 5 کو اور c کے لئے -84 کو متبادل کریں۔
x=\frac{-5±\sqrt{25-4\left(-84\right)}}{2}
مربع 5۔
x=\frac{-5±\sqrt{25+336}}{2}
-4 کو -84 مرتبہ ضرب دیں۔
x=\frac{-5±\sqrt{361}}{2}
25 کو 336 میں شامل کریں۔
x=\frac{-5±19}{2}
361 کا جذر لیں۔
x=\frac{14}{2}
جب ± جمع ہو تو اب مساوات x=\frac{-5±19}{2} کو حل کریں۔ -5 کو 19 میں شامل کریں۔
x=7
14 کو 2 سے تقسیم کریں۔
x=-\frac{24}{2}
جب ± منفی ہو تو اب مساوات x=\frac{-5±19}{2} کو حل کریں۔ 19 کو -5 میں سے منہا کریں۔
x=-12
-24 کو 2 سے تقسیم کریں۔
x=7 x=-12
مساوات اب حل ہو گئی ہے۔
x^{2}+5x=84
اس قسم کی مربعی قواعد مربع مکمل کرنے کے بعد حل ہوسکتی ہیں۔ مربع کو مکمل کرنے کے لیئے، مساوات کو پہلے اس شکل میں ہونا ضروری ہے x^{2}+bx=c۔
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=84+\left(\frac{5}{2}\right)^{2}
2 سے \frac{5}{2} حاصل کرنے کے لیے، 5 کو x اصطلاح کے کو ایفیشنٹ سے تقسیم کریں۔ پھر \frac{5}{2} کے مربع کو مساوات کی دونوں جانب جمع کریں۔ یہ مرحلہ مساوات کی بائیں ہاتھ کی جانب کو ایک مکمل مربع بناتا ہے۔
x^{2}+5x+\frac{25}{4}=84+\frac{25}{4}
کسر کا نیومیریٹر اور ڈینومینیٹر دونوں پر مربع لگا کر \frac{5}{2} کو مربع کریں۔
x^{2}+5x+\frac{25}{4}=\frac{361}{4}
84 کو \frac{25}{4} میں شامل کریں۔
\left(x+\frac{5}{2}\right)^{2}=\frac{361}{4}
فیکٹر x^{2}+5x+\frac{25}{4}۔ عمومی طور پر جب x^{2}+bx+c ایک کامل مربع ہوگا تو اسے ہمیشہ \left(x+\frac{b}{2}\right)^{2} کی طرح فیکٹر کیا جا سکتا ہے۔
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{361}{4}}
مساوات کی دونوں اطراف کا جذر لیں۔
x+\frac{5}{2}=\frac{19}{2} x+\frac{5}{2}=-\frac{19}{2}
سادہ کریں۔
x=7 x=-12
مساوات کے دونوں اطراف سے \frac{5}{2} منہا کریں۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}