x کے لئے حل کریں
x=-40
x=9
مخطط
حصہ
کلپ بورڈ پر کاپی کیا گیا
a+b=31 ab=-360
مساوات حل کرنے کیلئے، فیکٹر x^{2}+31x-360 فالمولہ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) استعمال کر رہا ہے۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
-1,360 -2,180 -3,120 -4,90 -5,72 -6,60 -8,45 -9,40 -10,36 -12,30 -15,24 -18,20
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b مثبت ہے، مثبت عدد میں منفی سے زیادہ مطلق قدر ہے۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل -360 ہوتا ہے۔
-1+360=359 -2+180=178 -3+120=117 -4+90=86 -5+72=67 -6+60=54 -8+45=37 -9+40=31 -10+36=26 -12+30=18 -15+24=9 -18+20=2
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-9 b=40
حل ایک جوڑا ہے جو میزان 31 دیتا ہے۔
\left(x-9\right)\left(x+40\right)
حاصل شدہ اقدار کا استعمال کر کے فیکٹر شدہ اظہار \left(x+a\right)\left(x+b\right) دوبارہ لکھیں۔
x=9 x=-40
مساوات کا حل تلاش کرنے کیلئے، x-9=0 اور x+40=0 حل کریں۔
a+b=31 ab=1\left(-360\right)=-360
مساوات حل کرنے کیلئے، گروپنگ کرکے بائیں جانب فیکٹر کریں۔ پہلے، بائیں جانب کو x^{2}+ax+bx-360 بطور دوبارہ لکھنا ہو گا۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
-1,360 -2,180 -3,120 -4,90 -5,72 -6,60 -8,45 -9,40 -10,36 -12,30 -15,24 -18,20
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b مثبت ہے، مثبت عدد میں منفی سے زیادہ مطلق قدر ہے۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل -360 ہوتا ہے۔
-1+360=359 -2+180=178 -3+120=117 -4+90=86 -5+72=67 -6+60=54 -8+45=37 -9+40=31 -10+36=26 -12+30=18 -15+24=9 -18+20=2
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-9 b=40
حل ایک جوڑا ہے جو میزان 31 دیتا ہے۔
\left(x^{2}-9x\right)+\left(40x-360\right)
x^{2}+31x-360 کو بطور \left(x^{2}-9x\right)+\left(40x-360\right) دوبارہ تحریر کریں۔
x\left(x-9\right)+40\left(x-9\right)
پہلے گروپ میں x اور دوسرے میں 40 اجزائے ضربی میں تقسیم کریں۔
\left(x-9\right)\left(x+40\right)
عام اصطلاح x-9 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
x=9 x=-40
مساوات کا حل تلاش کرنے کیلئے، x-9=0 اور x+40=0 حل کریں۔
x^{2}+31x-360=0
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x=\frac{-31±\sqrt{31^{2}-4\left(-360\right)}}{2}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے 1 کو، b کے لئے 31 کو اور c کے لئے -360 کو متبادل کریں۔
x=\frac{-31±\sqrt{961-4\left(-360\right)}}{2}
مربع 31۔
x=\frac{-31±\sqrt{961+1440}}{2}
-4 کو -360 مرتبہ ضرب دیں۔
x=\frac{-31±\sqrt{2401}}{2}
961 کو 1440 میں شامل کریں۔
x=\frac{-31±49}{2}
2401 کا جذر لیں۔
x=\frac{18}{2}
جب ± جمع ہو تو اب مساوات x=\frac{-31±49}{2} کو حل کریں۔ -31 کو 49 میں شامل کریں۔
x=9
18 کو 2 سے تقسیم کریں۔
x=-\frac{80}{2}
جب ± منفی ہو تو اب مساوات x=\frac{-31±49}{2} کو حل کریں۔ 49 کو -31 میں سے منہا کریں۔
x=-40
-80 کو 2 سے تقسیم کریں۔
x=9 x=-40
مساوات اب حل ہو گئی ہے۔
x^{2}+31x-360=0
اس قسم کی مربعی قواعد مربع مکمل کرنے کے بعد حل ہوسکتی ہیں۔ مربع کو مکمل کرنے کے لیئے، مساوات کو پہلے اس شکل میں ہونا ضروری ہے x^{2}+bx=c۔
x^{2}+31x-360-\left(-360\right)=-\left(-360\right)
مساوات کے دونوں اطراف سے 360 کو شامل کریں۔
x^{2}+31x=-\left(-360\right)
-360 کے خود سے منہا کرنے پر 0 ہی بچتا ہے۔
x^{2}+31x=360
-360 کو 0 میں سے منہا کریں۔
x^{2}+31x+\left(\frac{31}{2}\right)^{2}=360+\left(\frac{31}{2}\right)^{2}
2 سے \frac{31}{2} حاصل کرنے کے لیے، 31 کو x اصطلاح کے کو ایفیشنٹ سے تقسیم کریں۔ پھر \frac{31}{2} کے مربع کو مساوات کی دونوں جانب جمع کریں۔ یہ مرحلہ مساوات کی بائیں ہاتھ کی جانب کو ایک مکمل مربع بناتا ہے۔
x^{2}+31x+\frac{961}{4}=360+\frac{961}{4}
کسر کا نیومیریٹر اور ڈینومینیٹر دونوں پر مربع لگا کر \frac{31}{2} کو مربع کریں۔
x^{2}+31x+\frac{961}{4}=\frac{2401}{4}
360 کو \frac{961}{4} میں شامل کریں۔
\left(x+\frac{31}{2}\right)^{2}=\frac{2401}{4}
فیکٹر x^{2}+31x+\frac{961}{4}۔ عمومی طور پر جب x^{2}+bx+c ایک کامل مربع ہوگا تو اسے ہمیشہ \left(x+\frac{b}{2}\right)^{2} کی طرح فیکٹر کیا جا سکتا ہے۔
\sqrt{\left(x+\frac{31}{2}\right)^{2}}=\sqrt{\frac{2401}{4}}
مساوات کی دونوں اطراف کا جذر لیں۔
x+\frac{31}{2}=\frac{49}{2} x+\frac{31}{2}=-\frac{49}{2}
سادہ کریں۔
x=9 x=-40
مساوات کے دونوں اطراف سے \frac{31}{2} منہا کریں۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}