اہم مواد پر چھوڑ دیں
عنصر
Tick mark Image
جائزہ ليں
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

a+b=3 ab=1\left(-10\right)=-10
گروپنگ کرکے اظہار فیکٹر کریں۔ پہلے، اظہار x^{2}+ax+bx-10 کے طور پر دوبارہ لکھنے کی ضرورت ہے۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
-1,10 -2,5
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b مثبت ہے، مثبت عدد میں منفی سے زیادہ مطلق قدر ہے۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل -10 ہوتا ہے۔
-1+10=9 -2+5=3
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-2 b=5
حل ایک جوڑا ہے جو میزان 3 دیتا ہے۔
\left(x^{2}-2x\right)+\left(5x-10\right)
x^{2}+3x-10 کو بطور \left(x^{2}-2x\right)+\left(5x-10\right) دوبارہ تحریر کریں۔
x\left(x-2\right)+5\left(x-2\right)
پہلے گروپ میں x اور دوسرے میں 5 اجزائے ضربی میں تقسیم کریں۔
\left(x-2\right)\left(x+5\right)
عام اصطلاح x-2 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
x^{2}+3x-10=0
دو درجی متعدد رقمی کو استحالہ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) کا استعمال کر کے اجزائے ضربی میں تبدیل کیا جا سکتا ہے، جہاں x_{1} اور x_{2} دو درجی مساوات ax^{2}+bx+c=0 کے حل ہیں۔
x=\frac{-3±\sqrt{3^{2}-4\left(-10\right)}}{2}
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x=\frac{-3±\sqrt{9-4\left(-10\right)}}{2}
مربع 3۔
x=\frac{-3±\sqrt{9+40}}{2}
-4 کو -10 مرتبہ ضرب دیں۔
x=\frac{-3±\sqrt{49}}{2}
9 کو 40 میں شامل کریں۔
x=\frac{-3±7}{2}
49 کا جذر لیں۔
x=\frac{4}{2}
جب ± جمع ہو تو اب مساوات x=\frac{-3±7}{2} کو حل کریں۔ -3 کو 7 میں شامل کریں۔
x=2
4 کو 2 سے تقسیم کریں۔
x=-\frac{10}{2}
جب ± منفی ہو تو اب مساوات x=\frac{-3±7}{2} کو حل کریں۔ 7 کو -3 میں سے منہا کریں۔
x=-5
-10 کو 2 سے تقسیم کریں۔
x^{2}+3x-10=\left(x-2\right)\left(x-\left(-5\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) کا استعمال کر کے اصل اظہار کو اجزائے ضربی میں بدلیں۔ x_{1} کے متبادل 2 اور x_{2} کے متبادل -5 رکھیں۔
x^{2}+3x-10=\left(x-2\right)\left(x+5\right)
p-\left(-q\right) سے p+q کے فارم کے تمام اظہارات کو آسان بنائیں۔