اہم مواد پر چھوڑ دیں
x کے لئے حل کریں
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

a+b=13 ab=-30
مساوات حل کرنے کیلئے، فیکٹر x^{2}+13x-30 فالمولہ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) استعمال کر رہا ہے۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
-1,30 -2,15 -3,10 -5,6
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b مثبت ہے، مثبت عدد میں منفی سے زیادہ مطلق قدر ہے۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل -30 ہوتا ہے۔
-1+30=29 -2+15=13 -3+10=7 -5+6=1
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-2 b=15
حل ایک جوڑا ہے جو میزان 13 دیتا ہے۔
\left(x-2\right)\left(x+15\right)
حاصل شدہ اقدار کا استعمال کر کے فیکٹر شدہ اظہار \left(x+a\right)\left(x+b\right) دوبارہ لکھیں۔
x=2 x=-15
مساوات کا حل تلاش کرنے کیلئے، x-2=0 اور x+15=0 حل کریں۔
a+b=13 ab=1\left(-30\right)=-30
مساوات حل کرنے کیلئے، گروپنگ کرکے بائیں جانب فیکٹر کریں۔ پہلے، بائیں جانب کو x^{2}+ax+bx-30 بطور دوبارہ لکھنا ہو گا۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
-1,30 -2,15 -3,10 -5,6
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b مثبت ہے، مثبت عدد میں منفی سے زیادہ مطلق قدر ہے۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل -30 ہوتا ہے۔
-1+30=29 -2+15=13 -3+10=7 -5+6=1
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-2 b=15
حل ایک جوڑا ہے جو میزان 13 دیتا ہے۔
\left(x^{2}-2x\right)+\left(15x-30\right)
x^{2}+13x-30 کو بطور \left(x^{2}-2x\right)+\left(15x-30\right) دوبارہ تحریر کریں۔
x\left(x-2\right)+15\left(x-2\right)
پہلے گروپ میں x اور دوسرے میں 15 اجزائے ضربی میں تقسیم کریں۔
\left(x-2\right)\left(x+15\right)
عام اصطلاح x-2 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
x=2 x=-15
مساوات کا حل تلاش کرنے کیلئے، x-2=0 اور x+15=0 حل کریں۔
x^{2}+13x-30=0
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x=\frac{-13±\sqrt{13^{2}-4\left(-30\right)}}{2}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے 1 کو، b کے لئے 13 کو اور c کے لئے -30 کو متبادل کریں۔
x=\frac{-13±\sqrt{169-4\left(-30\right)}}{2}
مربع 13۔
x=\frac{-13±\sqrt{169+120}}{2}
-4 کو -30 مرتبہ ضرب دیں۔
x=\frac{-13±\sqrt{289}}{2}
169 کو 120 میں شامل کریں۔
x=\frac{-13±17}{2}
289 کا جذر لیں۔
x=\frac{4}{2}
جب ± جمع ہو تو اب مساوات x=\frac{-13±17}{2} کو حل کریں۔ -13 کو 17 میں شامل کریں۔
x=2
4 کو 2 سے تقسیم کریں۔
x=-\frac{30}{2}
جب ± منفی ہو تو اب مساوات x=\frac{-13±17}{2} کو حل کریں۔ 17 کو -13 میں سے منہا کریں۔
x=-15
-30 کو 2 سے تقسیم کریں۔
x=2 x=-15
مساوات اب حل ہو گئی ہے۔
x^{2}+13x-30=0
اس قسم کی مربعی قواعد مربع مکمل کرنے کے بعد حل ہوسکتی ہیں۔ مربع کو مکمل کرنے کے لیئے، مساوات کو پہلے اس شکل میں ہونا ضروری ہے x^{2}+bx=c۔
x^{2}+13x-30-\left(-30\right)=-\left(-30\right)
مساوات کے دونوں اطراف سے 30 کو شامل کریں۔
x^{2}+13x=-\left(-30\right)
-30 کے خود سے منہا کرنے پر 0 ہی بچتا ہے۔
x^{2}+13x=30
-30 کو 0 میں سے منہا کریں۔
x^{2}+13x+\left(\frac{13}{2}\right)^{2}=30+\left(\frac{13}{2}\right)^{2}
2 سے \frac{13}{2} حاصل کرنے کے لیے، 13 کو x اصطلاح کے کو ایفیشنٹ سے تقسیم کریں۔ پھر \frac{13}{2} کے مربع کو مساوات کی دونوں جانب جمع کریں۔ یہ مرحلہ مساوات کی بائیں ہاتھ کی جانب کو ایک مکمل مربع بناتا ہے۔
x^{2}+13x+\frac{169}{4}=30+\frac{169}{4}
کسر کا نیومیریٹر اور ڈینومینیٹر دونوں پر مربع لگا کر \frac{13}{2} کو مربع کریں۔
x^{2}+13x+\frac{169}{4}=\frac{289}{4}
30 کو \frac{169}{4} میں شامل کریں۔
\left(x+\frac{13}{2}\right)^{2}=\frac{289}{4}
فیکٹر x^{2}+13x+\frac{169}{4}۔ عمومی طور پر جب x^{2}+bx+c ایک کامل مربع ہوگا تو اسے ہمیشہ \left(x+\frac{b}{2}\right)^{2} کی طرح فیکٹر کیا جا سکتا ہے۔
\sqrt{\left(x+\frac{13}{2}\right)^{2}}=\sqrt{\frac{289}{4}}
مساوات کی دونوں اطراف کا جذر لیں۔
x+\frac{13}{2}=\frac{17}{2} x+\frac{13}{2}=-\frac{17}{2}
سادہ کریں۔
x=2 x=-15
مساوات کے دونوں اطراف سے \frac{13}{2} منہا کریں۔