اہم مواد پر چھوڑ دیں
عنصر
Tick mark Image
جائزہ ليں
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

a+b=10 ab=1\times 16=16
گروپنگ کرکے اظہار فیکٹر کریں۔ پہلے، اظہار x^{2}+ax+bx+16 کے طور پر دوبارہ لکھنے کی ضرورت ہے۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
1,16 2,8 4,4
چونکہ ab مثبت ہے، a اور b کی علامت یکساں ہے۔ چونکہ a+b مثبت ہے، a اور b بھی مثبت ہیں۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل 16 ہوتا ہے۔
1+16=17 2+8=10 4+4=8
ہر جوڑے کی رقم کا حساب لگائیں۔
a=2 b=8
حل ایک جوڑا ہے جو میزان 10 دیتا ہے۔
\left(x^{2}+2x\right)+\left(8x+16\right)
x^{2}+10x+16 کو بطور \left(x^{2}+2x\right)+\left(8x+16\right) دوبارہ تحریر کریں۔
x\left(x+2\right)+8\left(x+2\right)
پہلے گروپ میں x اور دوسرے میں 8 اجزائے ضربی میں تقسیم کریں۔
\left(x+2\right)\left(x+8\right)
عام اصطلاح x+2 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
x^{2}+10x+16=0
دو درجی متعدد رقمی کو استحالہ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) کا استعمال کر کے اجزائے ضربی میں تبدیل کیا جا سکتا ہے، جہاں x_{1} اور x_{2} دو درجی مساوات ax^{2}+bx+c=0 کے حل ہیں۔
x=\frac{-10±\sqrt{10^{2}-4\times 16}}{2}
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x=\frac{-10±\sqrt{100-4\times 16}}{2}
مربع 10۔
x=\frac{-10±\sqrt{100-64}}{2}
-4 کو 16 مرتبہ ضرب دیں۔
x=\frac{-10±\sqrt{36}}{2}
100 کو -64 میں شامل کریں۔
x=\frac{-10±6}{2}
36 کا جذر لیں۔
x=-\frac{4}{2}
جب ± جمع ہو تو اب مساوات x=\frac{-10±6}{2} کو حل کریں۔ -10 کو 6 میں شامل کریں۔
x=-2
-4 کو 2 سے تقسیم کریں۔
x=-\frac{16}{2}
جب ± منفی ہو تو اب مساوات x=\frac{-10±6}{2} کو حل کریں۔ 6 کو -10 میں سے منہا کریں۔
x=-8
-16 کو 2 سے تقسیم کریں۔
x^{2}+10x+16=\left(x-\left(-2\right)\right)\left(x-\left(-8\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) کا استعمال کر کے اصل اظہار کو اجزائے ضربی میں بدلیں۔ x_{1} کے متبادل -2 اور x_{2} کے متبادل -8 رکھیں۔
x^{2}+10x+16=\left(x+2\right)\left(x+8\right)
p-\left(-q\right) سے p+q کے فارم کے تمام اظہارات کو آسان بنائیں۔