اہم مواد پر چھوڑ دیں
x کے لئے حل کریں
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

xx+x\times 5=-6
جبکہ زیرو کے ساتھ تقسیم واضح نہیں کی گئی ہے تو متغیرہ x 0 کے مساوی نہیں ہو سکتا۔ x سے مساوات کی دونوں اطراف کو ضرب دیں۔
x^{2}+x\times 5=-6
x^{2} حاصل کرنے کے لئے x اور x کو ضرب دیں۔
x^{2}+x\times 5+6=0
دونوں اطراف میں 6 شامل کریں۔
x^{2}+5x+6=0
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x=\frac{-5±\sqrt{5^{2}-4\times 6}}{2}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے 1 کو، b کے لئے 5 کو اور c کے لئے 6 کو متبادل کریں۔
x=\frac{-5±\sqrt{25-4\times 6}}{2}
مربع 5۔
x=\frac{-5±\sqrt{25-24}}{2}
-4 کو 6 مرتبہ ضرب دیں۔
x=\frac{-5±\sqrt{1}}{2}
25 کو -24 میں شامل کریں۔
x=\frac{-5±1}{2}
1 کا جذر لیں۔
x=-\frac{4}{2}
جب ± جمع ہو تو اب مساوات x=\frac{-5±1}{2} کو حل کریں۔ -5 کو 1 میں شامل کریں۔
x=-2
-4 کو 2 سے تقسیم کریں۔
x=-\frac{6}{2}
جب ± منفی ہو تو اب مساوات x=\frac{-5±1}{2} کو حل کریں۔ 1 کو -5 میں سے منہا کریں۔
x=-3
-6 کو 2 سے تقسیم کریں۔
x=-2 x=-3
مساوات اب حل ہو گئی ہے۔
xx+x\times 5=-6
جبکہ زیرو کے ساتھ تقسیم واضح نہیں کی گئی ہے تو متغیرہ x 0 کے مساوی نہیں ہو سکتا۔ x سے مساوات کی دونوں اطراف کو ضرب دیں۔
x^{2}+x\times 5=-6
x^{2} حاصل کرنے کے لئے x اور x کو ضرب دیں۔
x^{2}+5x=-6
اس قسم کی مربعی قواعد مربع مکمل کرنے کے بعد حل ہوسکتی ہیں۔ مربع کو مکمل کرنے کے لیئے، مساوات کو پہلے اس شکل میں ہونا ضروری ہے x^{2}+bx=c۔
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-6+\left(\frac{5}{2}\right)^{2}
2 سے \frac{5}{2} حاصل کرنے کے لیے، 5 کو x اصطلاح کے کو ایفیشنٹ سے تقسیم کریں۔ پھر \frac{5}{2} کے مربع کو مساوات کی دونوں جانب جمع کریں۔ یہ مرحلہ مساوات کی بائیں ہاتھ کی جانب کو ایک مکمل مربع بناتا ہے۔
x^{2}+5x+\frac{25}{4}=-6+\frac{25}{4}
کسر کا نیومیریٹر اور ڈینومینیٹر دونوں پر مربع لگا کر \frac{5}{2} کو مربع کریں۔
x^{2}+5x+\frac{25}{4}=\frac{1}{4}
-6 کو \frac{25}{4} میں شامل کریں۔
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4}
فیکٹر x^{2}+5x+\frac{25}{4}۔ عمومی طور پر جب x^{2}+bx+c ایک کامل مربع ہوگا تو اسے ہمیشہ \left(x+\frac{b}{2}\right)^{2} کی طرح فیکٹر کیا جا سکتا ہے۔
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
مساوات کی دونوں اطراف کا جذر لیں۔
x+\frac{5}{2}=\frac{1}{2} x+\frac{5}{2}=-\frac{1}{2}
سادہ کریں۔
x=-2 x=-3
مساوات کے دونوں اطراف سے \frac{5}{2} منہا کریں۔