جائزہ ليں
\left(2-3i\right)s+\left(\frac{46}{25}-\frac{28}{25}i\right)
وسیع کریں
\left(2-3i\right)s+\left(\frac{46}{25}-\frac{28}{25}i\right)
حصہ
کلپ بورڈ پر کاپی کیا گیا
s\left(2-3i\right)+\frac{2\left(4+3i\right)}{\left(4-3i\right)\left(4+3i\right)}\left(2-5i\right)
\frac{2}{4-3i} کے شمار کنندہ اور نسب نما دونوں کو شمار کنندہ کے مخلوط جفتہ سے ضرب دیں، 4+3i۔
s\left(2-3i\right)+\frac{2\left(4+3i\right)}{4^{2}-3^{2}i^{2}}\left(2-5i\right)
یہ قاعدہ استعمال کرکے ضرب کے مربع کے فرق میں تبدیلی کی جا سکتی ہے: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}۔
s\left(2-3i\right)+\frac{2\left(4+3i\right)}{25}\left(2-5i\right)
تعریف کے ذریعے i^{2}، -1 ہے۔ نسب نما کا شمار کریں۔
s\left(2-3i\right)+\frac{2\times 4+2\times \left(3i\right)}{25}\left(2-5i\right)
2 کو 4+3i مرتبہ ضرب دیں۔
s\left(2-3i\right)+\frac{8+6i}{25}\left(2-5i\right)
2\times 4+2\times \left(3i\right) میں ضرب دیں۔
s\left(2-3i\right)+\left(\frac{8}{25}+\frac{6}{25}i\right)\left(2-5i\right)
\frac{8}{25}+\frac{6}{25}i حاصل کرنے کے لئے 8+6i کو 25 سے تقسیم کریں۔
s\left(2-3i\right)+\frac{8}{25}\times 2+\frac{8}{25}\times \left(-5i\right)+\frac{6}{25}i\times 2+\frac{6}{25}\left(-5\right)i^{2}
پیچیدہ اعداد \frac{8}{25}+\frac{6}{25}i اور 2-5i کو اس طرح ضرب دیں جیسے آپ دو رقمی سے ضرب دیتے ہیں۔
s\left(2-3i\right)+\frac{8}{25}\times 2+\frac{8}{25}\times \left(-5i\right)+\frac{6}{25}i\times 2+\frac{6}{25}\left(-5\right)\left(-1\right)
تعریف کے ذریعے i^{2}، -1 ہے۔
s\left(2-3i\right)+\frac{16}{25}-\frac{8}{5}i+\frac{12}{25}i+\frac{6}{5}
\frac{8}{25}\times 2+\frac{8}{25}\times \left(-5i\right)+\frac{6}{25}i\times 2+\frac{6}{25}\left(-5\right)\left(-1\right) میں ضرب دیں۔
s\left(2-3i\right)+\frac{16}{25}+\frac{6}{5}+\left(-\frac{8}{5}+\frac{12}{25}\right)i
\frac{16}{25}-\frac{8}{5}i+\frac{12}{25}i+\frac{6}{5} میں حقیقی اور غیر حقیقی صیغے یکجا کریں۔
s\left(2-3i\right)+\left(\frac{46}{25}-\frac{28}{25}i\right)
\frac{16}{25}+\frac{6}{5}+\left(-\frac{8}{5}+\frac{12}{25}\right)i میں جمع کریں۔
s\left(2-3i\right)+\frac{2\left(4+3i\right)}{\left(4-3i\right)\left(4+3i\right)}\left(2-5i\right)
\frac{2}{4-3i} کے شمار کنندہ اور نسب نما دونوں کو شمار کنندہ کے مخلوط جفتہ سے ضرب دیں، 4+3i۔
s\left(2-3i\right)+\frac{2\left(4+3i\right)}{4^{2}-3^{2}i^{2}}\left(2-5i\right)
یہ قاعدہ استعمال کرکے ضرب کے مربع کے فرق میں تبدیلی کی جا سکتی ہے: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}۔
s\left(2-3i\right)+\frac{2\left(4+3i\right)}{25}\left(2-5i\right)
تعریف کے ذریعے i^{2}، -1 ہے۔ نسب نما کا شمار کریں۔
s\left(2-3i\right)+\frac{2\times 4+2\times \left(3i\right)}{25}\left(2-5i\right)
2 کو 4+3i مرتبہ ضرب دیں۔
s\left(2-3i\right)+\frac{8+6i}{25}\left(2-5i\right)
2\times 4+2\times \left(3i\right) میں ضرب دیں۔
s\left(2-3i\right)+\left(\frac{8}{25}+\frac{6}{25}i\right)\left(2-5i\right)
\frac{8}{25}+\frac{6}{25}i حاصل کرنے کے لئے 8+6i کو 25 سے تقسیم کریں۔
s\left(2-3i\right)+\frac{8}{25}\times 2+\frac{8}{25}\times \left(-5i\right)+\frac{6}{25}i\times 2+\frac{6}{25}\left(-5\right)i^{2}
پیچیدہ اعداد \frac{8}{25}+\frac{6}{25}i اور 2-5i کو اس طرح ضرب دیں جیسے آپ دو رقمی سے ضرب دیتے ہیں۔
s\left(2-3i\right)+\frac{8}{25}\times 2+\frac{8}{25}\times \left(-5i\right)+\frac{6}{25}i\times 2+\frac{6}{25}\left(-5\right)\left(-1\right)
تعریف کے ذریعے i^{2}، -1 ہے۔
s\left(2-3i\right)+\frac{16}{25}-\frac{8}{5}i+\frac{12}{25}i+\frac{6}{5}
\frac{8}{25}\times 2+\frac{8}{25}\times \left(-5i\right)+\frac{6}{25}i\times 2+\frac{6}{25}\left(-5\right)\left(-1\right) میں ضرب دیں۔
s\left(2-3i\right)+\frac{16}{25}+\frac{6}{5}+\left(-\frac{8}{5}+\frac{12}{25}\right)i
\frac{16}{25}-\frac{8}{5}i+\frac{12}{25}i+\frac{6}{5} میں حقیقی اور غیر حقیقی صیغے یکجا کریں۔
s\left(2-3i\right)+\left(\frac{46}{25}-\frac{28}{25}i\right)
\frac{16}{25}+\frac{6}{5}+\left(-\frac{8}{5}+\frac{12}{25}\right)i میں جمع کریں۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}