n کے لئے حل کریں
n=-14
n=15
حصہ
کلپ بورڈ پر کاپی کیا گیا
a+b=-1 ab=-210
مساوات حل کرنے کیلئے، فیکٹر n^{2}-n-210 فالمولہ n^{2}+\left(a+b\right)n+ab=\left(n+a\right)\left(n+b\right) استعمال کر رہا ہے۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
1,-210 2,-105 3,-70 5,-42 6,-35 7,-30 10,-21 14,-15
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b منفی ہے، منفی عدد میں مثبت سے زیادہ مطلق قدر ہے۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل -210 ہوتا ہے۔
1-210=-209 2-105=-103 3-70=-67 5-42=-37 6-35=-29 7-30=-23 10-21=-11 14-15=-1
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-15 b=14
حل ایک جوڑا ہے جو میزان -1 دیتا ہے۔
\left(n-15\right)\left(n+14\right)
حاصل شدہ اقدار کا استعمال کر کے فیکٹر شدہ اظہار \left(n+a\right)\left(n+b\right) دوبارہ لکھیں۔
n=15 n=-14
مساوات کا حل تلاش کرنے کیلئے، n-15=0 اور n+14=0 حل کریں۔
a+b=-1 ab=1\left(-210\right)=-210
مساوات حل کرنے کیلئے، گروپنگ کرکے بائیں جانب فیکٹر کریں۔ پہلے، بائیں جانب کو n^{2}+an+bn-210 بطور دوبارہ لکھنا ہو گا۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
1,-210 2,-105 3,-70 5,-42 6,-35 7,-30 10,-21 14,-15
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b منفی ہے، منفی عدد میں مثبت سے زیادہ مطلق قدر ہے۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل -210 ہوتا ہے۔
1-210=-209 2-105=-103 3-70=-67 5-42=-37 6-35=-29 7-30=-23 10-21=-11 14-15=-1
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-15 b=14
حل ایک جوڑا ہے جو میزان -1 دیتا ہے۔
\left(n^{2}-15n\right)+\left(14n-210\right)
n^{2}-n-210 کو بطور \left(n^{2}-15n\right)+\left(14n-210\right) دوبارہ تحریر کریں۔
n\left(n-15\right)+14\left(n-15\right)
پہلے گروپ میں n اور دوسرے میں 14 اجزائے ضربی میں تقسیم کریں۔
\left(n-15\right)\left(n+14\right)
عام اصطلاح n-15 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
n=15 n=-14
مساوات کا حل تلاش کرنے کیلئے، n-15=0 اور n+14=0 حل کریں۔
n^{2}-n-210=0
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
n=\frac{-\left(-1\right)±\sqrt{1-4\left(-210\right)}}{2}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے 1 کو، b کے لئے -1 کو اور c کے لئے -210 کو متبادل کریں۔
n=\frac{-\left(-1\right)±\sqrt{1+840}}{2}
-4 کو -210 مرتبہ ضرب دیں۔
n=\frac{-\left(-1\right)±\sqrt{841}}{2}
1 کو 840 میں شامل کریں۔
n=\frac{-\left(-1\right)±29}{2}
841 کا جذر لیں۔
n=\frac{1±29}{2}
-1 کا مُخالف 1 ہے۔
n=\frac{30}{2}
جب ± جمع ہو تو اب مساوات n=\frac{1±29}{2} کو حل کریں۔ 1 کو 29 میں شامل کریں۔
n=15
30 کو 2 سے تقسیم کریں۔
n=-\frac{28}{2}
جب ± منفی ہو تو اب مساوات n=\frac{1±29}{2} کو حل کریں۔ 29 کو 1 میں سے منہا کریں۔
n=-14
-28 کو 2 سے تقسیم کریں۔
n=15 n=-14
مساوات اب حل ہو گئی ہے۔
n^{2}-n-210=0
اس قسم کی مربعی قواعد مربع مکمل کرنے کے بعد حل ہوسکتی ہیں۔ مربع کو مکمل کرنے کے لیئے، مساوات کو پہلے اس شکل میں ہونا ضروری ہے x^{2}+bx=c۔
n^{2}-n-210-\left(-210\right)=-\left(-210\right)
مساوات کے دونوں اطراف سے 210 کو شامل کریں۔
n^{2}-n=-\left(-210\right)
-210 کے خود سے منہا کرنے پر 0 ہی بچتا ہے۔
n^{2}-n=210
-210 کو 0 میں سے منہا کریں۔
n^{2}-n+\left(-\frac{1}{2}\right)^{2}=210+\left(-\frac{1}{2}\right)^{2}
2 سے -\frac{1}{2} حاصل کرنے کے لیے، -1 کو x اصطلاح کے کو ایفیشنٹ سے تقسیم کریں۔ پھر -\frac{1}{2} کے مربع کو مساوات کی دونوں جانب جمع کریں۔ یہ مرحلہ مساوات کی بائیں ہاتھ کی جانب کو ایک مکمل مربع بناتا ہے۔
n^{2}-n+\frac{1}{4}=210+\frac{1}{4}
کسر کا نیومیریٹر اور ڈینومینیٹر دونوں پر مربع لگا کر -\frac{1}{2} کو مربع کریں۔
n^{2}-n+\frac{1}{4}=\frac{841}{4}
210 کو \frac{1}{4} میں شامل کریں۔
\left(n-\frac{1}{2}\right)^{2}=\frac{841}{4}
فیکٹر n^{2}-n+\frac{1}{4}۔ عمومی طور پر جب x^{2}+bx+c ایک کامل مربع ہوگا تو اسے ہمیشہ \left(x+\frac{b}{2}\right)^{2} کی طرح فیکٹر کیا جا سکتا ہے۔
\sqrt{\left(n-\frac{1}{2}\right)^{2}}=\sqrt{\frac{841}{4}}
مساوات کی دونوں اطراف کا جذر لیں۔
n-\frac{1}{2}=\frac{29}{2} n-\frac{1}{2}=-\frac{29}{2}
سادہ کریں۔
n=15 n=-14
مساوات کے دونوں اطراف سے \frac{1}{2} کو شامل کریں۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}