عنصر
\left(n+4\right)\left(n+9\right)
جائزہ ليں
\left(n+4\right)\left(n+9\right)
حصہ
کلپ بورڈ پر کاپی کیا گیا
a+b=13 ab=1\times 36=36
گروپنگ کرکے اظہار فیکٹر کریں۔ پہلے، اظہار n^{2}+an+bn+36 کے طور پر دوبارہ لکھنے کی ضرورت ہے۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
1,36 2,18 3,12 4,9 6,6
چونکہ ab مثبت ہے، a اور b کی علامت یکساں ہے۔ چونکہ a+b مثبت ہے، a اور b بھی مثبت ہیں۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل 36 ہوتا ہے۔
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
ہر جوڑے کی رقم کا حساب لگائیں۔
a=4 b=9
حل ایک جوڑا ہے جو میزان 13 دیتا ہے۔
\left(n^{2}+4n\right)+\left(9n+36\right)
n^{2}+13n+36 کو بطور \left(n^{2}+4n\right)+\left(9n+36\right) دوبارہ تحریر کریں۔
n\left(n+4\right)+9\left(n+4\right)
پہلے گروپ میں n اور دوسرے میں 9 اجزائے ضربی میں تقسیم کریں۔
\left(n+4\right)\left(n+9\right)
عام اصطلاح n+4 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
n^{2}+13n+36=0
دو درجی متعدد رقمی کو استحالہ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) کا استعمال کر کے اجزائے ضربی میں تبدیل کیا جا سکتا ہے، جہاں x_{1} اور x_{2} دو درجی مساوات ax^{2}+bx+c=0 کے حل ہیں۔
n=\frac{-13±\sqrt{13^{2}-4\times 36}}{2}
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
n=\frac{-13±\sqrt{169-4\times 36}}{2}
مربع 13۔
n=\frac{-13±\sqrt{169-144}}{2}
-4 کو 36 مرتبہ ضرب دیں۔
n=\frac{-13±\sqrt{25}}{2}
169 کو -144 میں شامل کریں۔
n=\frac{-13±5}{2}
25 کا جذر لیں۔
n=-\frac{8}{2}
جب ± جمع ہو تو اب مساوات n=\frac{-13±5}{2} کو حل کریں۔ -13 کو 5 میں شامل کریں۔
n=-4
-8 کو 2 سے تقسیم کریں۔
n=-\frac{18}{2}
جب ± منفی ہو تو اب مساوات n=\frac{-13±5}{2} کو حل کریں۔ 5 کو -13 میں سے منہا کریں۔
n=-9
-18 کو 2 سے تقسیم کریں۔
n^{2}+13n+36=\left(n-\left(-4\right)\right)\left(n-\left(-9\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) کا استعمال کر کے اصل اظہار کو اجزائے ضربی میں بدلیں۔ x_{1} کے متبادل -4 اور x_{2} کے متبادل -9 رکھیں۔
n^{2}+13n+36=\left(n+4\right)\left(n+9\right)
p-\left(-q\right) سے p+q کے فارم کے تمام اظہارات کو آسان بنائیں۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}