اہم مواد پر چھوڑ دیں
عنصر
Tick mark Image
جائزہ ليں
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

a+b=-9 ab=4\left(-9\right)=-36
گروپنگ کرکے اظہار فیکٹر کریں۔ پہلے، اظہار 4x^{2}+ax+bx-9 کے طور پر دوبارہ لکھنے کی ضرورت ہے۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
1,-36 2,-18 3,-12 4,-9 6,-6
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b منفی ہے، منفی عدد میں مثبت سے زیادہ مطلق قدر ہے۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل -36 ہوتا ہے۔
1-36=-35 2-18=-16 3-12=-9 4-9=-5 6-6=0
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-12 b=3
حل ایک جوڑا ہے جو میزان -9 دیتا ہے۔
\left(4x^{2}-12x\right)+\left(3x-9\right)
4x^{2}-9x-9 کو بطور \left(4x^{2}-12x\right)+\left(3x-9\right) دوبارہ تحریر کریں۔
4x\left(x-3\right)+3\left(x-3\right)
پہلے گروپ میں 4x اور دوسرے میں 3 اجزائے ضربی میں تقسیم کریں۔
\left(x-3\right)\left(4x+3\right)
عام اصطلاح x-3 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
4x^{2}-9x-9=0
دو درجی متعدد رقمی کو استحالہ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) کا استعمال کر کے اجزائے ضربی میں تبدیل کیا جا سکتا ہے، جہاں x_{1} اور x_{2} دو درجی مساوات ax^{2}+bx+c=0 کے حل ہیں۔
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 4\left(-9\right)}}{2\times 4}
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x=\frac{-\left(-9\right)±\sqrt{81-4\times 4\left(-9\right)}}{2\times 4}
مربع -9۔
x=\frac{-\left(-9\right)±\sqrt{81-16\left(-9\right)}}{2\times 4}
-4 کو 4 مرتبہ ضرب دیں۔
x=\frac{-\left(-9\right)±\sqrt{81+144}}{2\times 4}
-16 کو -9 مرتبہ ضرب دیں۔
x=\frac{-\left(-9\right)±\sqrt{225}}{2\times 4}
81 کو 144 میں شامل کریں۔
x=\frac{-\left(-9\right)±15}{2\times 4}
225 کا جذر لیں۔
x=\frac{9±15}{2\times 4}
-9 کا مُخالف 9 ہے۔
x=\frac{9±15}{8}
2 کو 4 مرتبہ ضرب دیں۔
x=\frac{24}{8}
جب ± جمع ہو تو اب مساوات x=\frac{9±15}{8} کو حل کریں۔ 9 کو 15 میں شامل کریں۔
x=3
24 کو 8 سے تقسیم کریں۔
x=-\frac{6}{8}
جب ± منفی ہو تو اب مساوات x=\frac{9±15}{8} کو حل کریں۔ 15 کو 9 میں سے منہا کریں۔
x=-\frac{3}{4}
2 کو اخذ اور منسوخ کرتے ہوئے \frac{-6}{8} کسر کو کم تر اصطلاحات تک گھٹائیں۔
4x^{2}-9x-9=4\left(x-3\right)\left(x-\left(-\frac{3}{4}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) کا استعمال کر کے اصل اظہار کو اجزائے ضربی میں بدلیں۔ x_{1} کے متبادل 3 اور x_{2} کے متبادل -\frac{3}{4} رکھیں۔
4x^{2}-9x-9=4\left(x-3\right)\left(x+\frac{3}{4}\right)
p-\left(-q\right) سے p+q کے فارم کے تمام اظہارات کو آسان بنائیں۔
4x^{2}-9x-9=4\left(x-3\right)\times \frac{4x+3}{4}
ایک مشترکہ ڈینومینیٹر کو ڈھونڈتے ہوئے اور نیومیریٹر کو شامل کر کے \frac{3}{4} کو x میں شامل کریں۔ اور پھر کسر کو اگر ممکن ہو تو پست ترین اصطلاح تک گھٹائیں۔
4x^{2}-9x-9=\left(x-3\right)\left(4x+3\right)
4 اور 4 میں عظیم عام عامل 4 کو منسوخ کریں۔