اہم مواد پر چھوڑ دیں
عنصر
Tick mark Image
جائزہ ليں
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

a+b=-5 ab=2\times 3=6
گروپنگ کرکے اظہار فیکٹر کریں۔ پہلے، اظہار 2x^{2}+ax+bx+3 کے طور پر دوبارہ لکھنے کی ضرورت ہے۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
-1,-6 -2,-3
چونکہ ab مثبت ہے، a اور b کی علامت یکساں ہے۔ چونکہ a+b منفی ہے، a اور b بھی منفی ہیں۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل 6 ہوتا ہے۔
-1-6=-7 -2-3=-5
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-3 b=-2
حل ایک جوڑا ہے جو میزان -5 دیتا ہے۔
\left(2x^{2}-3x\right)+\left(-2x+3\right)
2x^{2}-5x+3 کو بطور \left(2x^{2}-3x\right)+\left(-2x+3\right) دوبارہ تحریر کریں۔
x\left(2x-3\right)-\left(2x-3\right)
پہلے گروپ میں x اور دوسرے میں -1 اجزائے ضربی میں تقسیم کریں۔
\left(2x-3\right)\left(x-1\right)
عام اصطلاح 2x-3 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
2x^{2}-5x+3=0
دو درجی متعدد رقمی کو استحالہ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) کا استعمال کر کے اجزائے ضربی میں تبدیل کیا جا سکتا ہے، جہاں x_{1} اور x_{2} دو درجی مساوات ax^{2}+bx+c=0 کے حل ہیں۔
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2\times 3}}{2\times 2}
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x=\frac{-\left(-5\right)±\sqrt{25-4\times 2\times 3}}{2\times 2}
مربع -5۔
x=\frac{-\left(-5\right)±\sqrt{25-8\times 3}}{2\times 2}
-4 کو 2 مرتبہ ضرب دیں۔
x=\frac{-\left(-5\right)±\sqrt{25-24}}{2\times 2}
-8 کو 3 مرتبہ ضرب دیں۔
x=\frac{-\left(-5\right)±\sqrt{1}}{2\times 2}
25 کو -24 میں شامل کریں۔
x=\frac{-\left(-5\right)±1}{2\times 2}
1 کا جذر لیں۔
x=\frac{5±1}{2\times 2}
-5 کا مُخالف 5 ہے۔
x=\frac{5±1}{4}
2 کو 2 مرتبہ ضرب دیں۔
x=\frac{6}{4}
جب ± جمع ہو تو اب مساوات x=\frac{5±1}{4} کو حل کریں۔ 5 کو 1 میں شامل کریں۔
x=\frac{3}{2}
2 کو اخذ اور منسوخ کرتے ہوئے \frac{6}{4} کسر کو کم تر اصطلاحات تک گھٹائیں۔
x=\frac{4}{4}
جب ± منفی ہو تو اب مساوات x=\frac{5±1}{4} کو حل کریں۔ 1 کو 5 میں سے منہا کریں۔
x=1
4 کو 4 سے تقسیم کریں۔
2x^{2}-5x+3=2\left(x-\frac{3}{2}\right)\left(x-1\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) کا استعمال کر کے اصل اظہار کو اجزائے ضربی میں بدلیں۔ x_{1} کے متبادل \frac{3}{2} اور x_{2} کے متبادل 1 رکھیں۔
2x^{2}-5x+3=2\times \frac{2x-3}{2}\left(x-1\right)
ایک مشترک ڈینومینیٹر معلوم کر کے اور نیومیریٹر کو منہا کر کے \frac{3}{2} کو x میں سے منہا کریں۔ اور پھر کسر کو اگر ممکن ہو تو اس کی کم ترین اصطلاحات میں سے کم کریں۔
2x^{2}-5x+3=\left(2x-3\right)\left(x-1\right)
2 اور 2 میں عظیم عام عامل 2 کو منسوخ کریں۔