f ( x ) = \tan ( \frac { \pi } { 2 } ( 44,7 - 32,5 ) ) + 65
f کے لئے حل کریں
f=\frac{5^{0,75}\left(\sqrt{10\left(\sqrt{5}-1\right)}-\sqrt{2\left(\sqrt{5}-1\right)}+260\sqrt[4]{5}\right)}{20x}
x\neq 0
x کے لئے حل کریں
x=\frac{5^{0,75}\left(\sqrt{10\left(\sqrt{5}-1\right)}-\sqrt{2\left(\sqrt{5}-1\right)}+260\sqrt[4]{5}\right)}{20f}
f\neq 0
مخطط
حصہ
کلپ بورڈ پر کاپی کیا گیا
fx=\tan(\frac{\pi }{2}\times 12,2)+65
12,2 حاصل کرنے کے لئے 44,7 کو 32,5 سے تفریق کریں۔
xf=\tan(\frac{61\pi }{10})+65
مساوات معیاری وضع میں ہے۔
\frac{xf}{x}=\frac{\frac{\sqrt[4]{5}\sqrt{2\sqrt{5}-2}}{4}-\frac{\sqrt{2\sqrt{5}-2}}{4\sqrt[4]{5}}+65}{x}
x سے دونوں اطراف کو تقسیم کریں۔
f=\frac{\frac{\sqrt[4]{5}\sqrt{2\sqrt{5}-2}}{4}-\frac{\sqrt{2\sqrt{5}-2}}{4\sqrt[4]{5}}+65}{x}
x سے تقسیم کرنا x سے ضرب کو کالعدم کرتا ہے۔
f=\frac{\sqrt{10\sqrt{5}-10}-\sqrt{2\sqrt{5}-2}+260\sqrt[4]{5}}{4\sqrt[4]{5}x}
65-\frac{\sqrt{2\sqrt{5}-2}}{4\sqrt[4]{5}}+\frac{\sqrt[4]{5}\sqrt{2\sqrt{5}-2}}{4} کو x سے تقسیم کریں۔
fx=\tan(\frac{\pi }{2}\times 12,2)+65
12,2 حاصل کرنے کے لئے 44,7 کو 32,5 سے تفریق کریں۔
fx=\tan(\frac{61\pi }{10})+65
مساوات معیاری وضع میں ہے۔
\frac{fx}{f}=\frac{\frac{\sqrt[4]{5}\sqrt{2\sqrt{5}-2}}{4}-\frac{\sqrt{2\sqrt{5}-2}}{4\sqrt[4]{5}}+65}{f}
f سے دونوں اطراف کو تقسیم کریں۔
x=\frac{\frac{\sqrt[4]{5}\sqrt{2\sqrt{5}-2}}{4}-\frac{\sqrt{2\sqrt{5}-2}}{4\sqrt[4]{5}}+65}{f}
f سے تقسیم کرنا f سے ضرب کو کالعدم کرتا ہے۔
x=\frac{\sqrt{10\sqrt{5}-10}-\sqrt{2\sqrt{5}-2}+260\sqrt[4]{5}}{4\sqrt[4]{5}f}
65-\frac{\sqrt{2\sqrt{5}-2}}{4\sqrt[4]{5}}+\frac{\sqrt[4]{5}\sqrt{2\sqrt{5}-2}}{4} کو f سے تقسیم کریں۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}