اہم مواد پر چھوڑ دیں
a کے لئے حل کریں
Tick mark Image
b کے لئے حل کریں
Tick mark Image

ویب سرچ سے اسی طرح کے مسائل

حصہ

\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{2}+c\right)^{2}=\left(-a\right)x^{2}-2bx+ac
\left(x^{2}+c\right)^{2} سے مساوات کی دونوں اطراف کو ضرب دیں۔
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(\left(x^{2}\right)^{2}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
\left(x^{2}+c\right)^{2} میں توسیع کے لئے دو رقمى کليہ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} استعمال کریں۔
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{4}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
کسی بھی دوسری قوت کی قوت کو بڑھانے کے لیئے، قوت نما کو ضرب دیں۔ 4 حاصل کرنے کے لئے 2 اور 2 کو ضرب دیں۔
\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}=\left(-a\right)x^{2}-2bx+ac
\frac{\mathrm{d}}{\mathrm{d}x}(f)x کو ایک سے x^{4}+2x^{2}c+c^{2} ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
\left(-a\right)x^{2}-2bx+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}
اطراف ادل بدل کریں تاکہ تمام متغیر اصطلاحات بائیں ہاتھ کی جانب ہوں۔
\left(-a\right)x^{2}+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}+2bx
دونوں اطراف میں 2bx شامل کریں۔
-ax^{2}+ac=x^{5}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2cx^{3}\frac{\mathrm{d}}{\mathrm{d}x}(f)+xc^{2}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2bx
شرائط کو پھر ترتیب دیں۔
\left(-x^{2}+c\right)a=x^{5}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2cx^{3}\frac{\mathrm{d}}{\mathrm{d}x}(f)+xc^{2}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2bx
a پر مشتمل تمام اصطلاحات کو یکجا کریں۔
\left(c-x^{2}\right)a=2bx
مساوات معیاری وضع میں ہے۔
\frac{\left(c-x^{2}\right)a}{c-x^{2}}=\frac{2bx}{c-x^{2}}
-x^{2}+c سے دونوں اطراف کو تقسیم کریں۔
a=\frac{2bx}{c-x^{2}}
-x^{2}+c سے تقسیم کرنا -x^{2}+c سے ضرب کو کالعدم کرتا ہے۔
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{2}+c\right)^{2}=\left(-a\right)x^{2}-2bx+ac
\left(x^{2}+c\right)^{2} سے مساوات کی دونوں اطراف کو ضرب دیں۔
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(\left(x^{2}\right)^{2}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
\left(x^{2}+c\right)^{2} میں توسیع کے لئے دو رقمى کليہ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} استعمال کریں۔
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{4}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
کسی بھی دوسری قوت کی قوت کو بڑھانے کے لیئے، قوت نما کو ضرب دیں۔ 4 حاصل کرنے کے لئے 2 اور 2 کو ضرب دیں۔
\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}=\left(-a\right)x^{2}-2bx+ac
\frac{\mathrm{d}}{\mathrm{d}x}(f)x کو ایک سے x^{4}+2x^{2}c+c^{2} ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
\left(-a\right)x^{2}-2bx+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}
اطراف ادل بدل کریں تاکہ تمام متغیر اصطلاحات بائیں ہاتھ کی جانب ہوں۔
-2bx+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}-\left(-a\right)x^{2}
\left(-a\right)x^{2} کو دونوں طرف سے منہا کریں۔
-2bx=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}-\left(-a\right)x^{2}-ac
ac کو دونوں طرف سے منہا کریں۔
-2bx=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}+ax^{2}-ac
1 حاصل کرنے کے لئے -1 اور -1 کو ضرب دیں۔
\left(-2x\right)b=ax^{2}-ac
مساوات معیاری وضع میں ہے۔
\frac{\left(-2x\right)b}{-2x}=\frac{a\left(x^{2}-c\right)}{-2x}
-2x سے دونوں اطراف کو تقسیم کریں۔
b=\frac{a\left(x^{2}-c\right)}{-2x}
-2x سے تقسیم کرنا -2x سے ضرب کو کالعدم کرتا ہے۔
b=-\frac{ax}{2}+\frac{ac}{2x}
a\left(x^{2}-c\right) کو -2x سے تقسیم کریں۔