e ^ { y } ( 1 + x ^ { 2 } ) d y = 2 x ( 1
d کے لئے حل کریں (complex solution)
\left\{\begin{matrix}d=\frac{2x}{y\left(x^{2}+1\right)e^{y}}\text{, }&x\neq -i\text{ and }x\neq i\text{ and }y\neq 0\\d\in \mathrm{C}\text{, }&x=0\text{ and }y=0\end{matrix}\right.
d کے لئے حل کریں
\left\{\begin{matrix}d=\frac{2x}{y\left(x^{2}+1\right)e^{y}}\text{, }&y\neq 0\\d\in \mathrm{R}\text{, }&x=0\text{ and }y=0\end{matrix}\right.
x کے لئے حل کریں (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{1-\left(dy\right)^{2}e^{2y}}+1}{dye^{y}}\text{; }x=\frac{-\sqrt{1-\left(dy\right)^{2}e^{2y}}+1}{dye^{y}}\text{, }&d\neq 0\text{ and }y\neq 0\\x=\frac{dye^{y}}{2}\text{, }&d=0\text{ or }y=0\end{matrix}\right.
x کے لئے حل کریں
\left\{\begin{matrix}x=\frac{\sqrt{1-\left(dy\right)^{2}e^{2y}}+1}{dye^{y}}\text{; }x=\frac{-\sqrt{1-\left(dy\right)^{2}e^{2y}}+1}{dye^{y}}\text{, }&d\neq 0\text{ and }y\neq 0\text{ and }|d|\leq \frac{1}{|y|e^{y}}\\x=\frac{dye^{y}}{2}\text{, }&d=0\text{ or }y=0\end{matrix}\right.
حصہ
کلپ بورڈ پر کاپی کیا گیا
\left(e^{y}+e^{y}x^{2}\right)dy=2x\times 1
e^{y} کو ایک سے 1+x^{2} ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
\left(e^{y}d+e^{y}x^{2}d\right)y=2x\times 1
e^{y}+e^{y}x^{2} کو ایک سے d ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
e^{y}dy+e^{y}x^{2}dy=2x\times 1
e^{y}d+e^{y}x^{2}d کو ایک سے y ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
e^{y}dy+e^{y}x^{2}dy=2x
2 حاصل کرنے کے لئے 2 اور 1 کو ضرب دیں۔
\left(e^{y}y+e^{y}x^{2}y\right)d=2x
d پر مشتمل تمام اصطلاحات کو یکجا کریں۔
\left(yx^{2}e^{y}+ye^{y}\right)d=2x
مساوات معیاری وضع میں ہے۔
\frac{\left(yx^{2}e^{y}+ye^{y}\right)d}{yx^{2}e^{y}+ye^{y}}=\frac{2x}{yx^{2}e^{y}+ye^{y}}
e^{y}x^{2}y+e^{y}y سے دونوں اطراف کو تقسیم کریں۔
d=\frac{2x}{yx^{2}e^{y}+ye^{y}}
e^{y}x^{2}y+e^{y}y سے تقسیم کرنا e^{y}x^{2}y+e^{y}y سے ضرب کو کالعدم کرتا ہے۔
d=\frac{2x}{y\left(x^{2}+1\right)e^{y}}
2x کو e^{y}x^{2}y+e^{y}y سے تقسیم کریں۔
\left(e^{y}+e^{y}x^{2}\right)dy=2x\times 1
e^{y} کو ایک سے 1+x^{2} ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
\left(e^{y}d+e^{y}x^{2}d\right)y=2x\times 1
e^{y}+e^{y}x^{2} کو ایک سے d ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
e^{y}dy+e^{y}x^{2}dy=2x\times 1
e^{y}d+e^{y}x^{2}d کو ایک سے y ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
e^{y}dy+e^{y}x^{2}dy=2x
2 حاصل کرنے کے لئے 2 اور 1 کو ضرب دیں۔
\left(e^{y}y+e^{y}x^{2}y\right)d=2x
d پر مشتمل تمام اصطلاحات کو یکجا کریں۔
\left(yx^{2}e^{y}+ye^{y}\right)d=2x
مساوات معیاری وضع میں ہے۔
\frac{\left(yx^{2}e^{y}+ye^{y}\right)d}{yx^{2}e^{y}+ye^{y}}=\frac{2x}{yx^{2}e^{y}+ye^{y}}
e^{y}x^{2}y+e^{y}y سے دونوں اطراف کو تقسیم کریں۔
d=\frac{2x}{yx^{2}e^{y}+ye^{y}}
e^{y}x^{2}y+e^{y}y سے تقسیم کرنا e^{y}x^{2}y+e^{y}y سے ضرب کو کالعدم کرتا ہے۔
d=\frac{2x}{y\left(x^{2}+1\right)e^{y}}
2x کو e^{y}x^{2}y+e^{y}y سے تقسیم کریں۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}