a کے لئے حل کریں
a=7
حصہ
کلپ بورڈ پر کاپی کیا گیا
a^{2}+a^{3}-392=0
392 کو دونوں طرف سے منہا کریں۔
a^{3}+a^{2}-392=0
معیاری وضع میں ڈالنے کے لئے مساوات کو پھر ترتیب دیں۔ قاعدہ کو سب سے زیادہ سے کم ترین پاور میں ترتیب دیں۔
±392,±196,±98,±56,±49,±28,±14,±8,±7,±4,±2,±1
ریشنل جذر تھیورم کے ذریعے، پولی نومیل کے تمام ریشنل جذر \frac{p}{q} کی شکل میں ہوتے ہیں، جہاں p کی مسلسل رکن -392 کو تقسیم کرتا ہے اور q معروف عددی سر 1 کو تقسیم کرتا ہے۔ تمام امیدواروں کی فہرست بنائیں \frac{p}{q}۔
a=7
تمام اجزائے ضربی آزما کر ایک ایسا جزر تلاش کریں، جو مطلق قدر سے سب سے چھوٹی سے شروع ہوتا ہے۔ اگر کوئی سالم عدد کا جزر نہ ملے تو کسروں کو آزمائیں۔
a^{2}+8a+56=0
جزو ضربی تھیورم سے، ہر جذر k کیلئے a-k پولی نامیل کا جزو ضربی ہے۔ a^{2}+8a+56 حاصل کرنے کے لئے a^{3}+a^{2}-392 کو a-7 سے تقسیم کریں۔ اس مساوات کو حل کریں جہاں نتیجہ 0 کے برابر ہے۔
a=\frac{-8±\sqrt{8^{2}-4\times 1\times 56}}{2}
ax^{2}+bx+c=0 کی تمام مساوات کو مربعى فارمولا: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کا استعمال کرکے حل کیا جاسکتا ہے۔ مربعى فارمولا میں a کے لیے متبادل 1، b کے لیے متبادل 8، اور c کے لیے متبادل 56 ہے۔
a=\frac{-8±\sqrt{-160}}{2}
حسابات کریں۔
a\in \emptyset
چونکہ اصل قطعہ میں منفی عدد کا جذر المربع واضح نہیں کیا گیا ہے، یہاں کوئی حل نہیں ہیں۔
a=7
حاصل شدہ تمام حلوں کی فہرست بنائیں۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}