a کے لئے حل کریں
a=-3
a=1
حصہ
کلپ بورڈ پر کاپی کیا گیا
a^{2}+2a+1-4=0
4 کو دونوں طرف سے منہا کریں۔
a^{2}+2a-3=0
-3 حاصل کرنے کے لئے 1 کو 4 سے تفریق کریں۔
a+b=2 ab=-3
مساوات حل کرنے کیلئے، فیکٹر a^{2}+2a-3 فالمولہ a^{2}+\left(a+b\right)a+ab=\left(a+a\right)\left(a+b\right) استعمال کر رہا ہے۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
a=-1 b=3
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b مثبت ہے، مثبت عدد میں منفی سے زیادہ مطلق قدر ہے۔ اس طرح کی جوڑی ہی سسٹم کا حل ہے۔
\left(a-1\right)\left(a+3\right)
حاصل شدہ اقدار کا استعمال کر کے فیکٹر شدہ اظہار \left(a+a\right)\left(a+b\right) دوبارہ لکھیں۔
a=1 a=-3
مساوات کا حل تلاش کرنے کیلئے، a-1=0 اور a+3=0 حل کریں۔
a^{2}+2a+1-4=0
4 کو دونوں طرف سے منہا کریں۔
a^{2}+2a-3=0
-3 حاصل کرنے کے لئے 1 کو 4 سے تفریق کریں۔
a+b=2 ab=1\left(-3\right)=-3
مساوات حل کرنے کیلئے، گروپنگ کرکے بائیں جانب فیکٹر کریں۔ پہلے، بائیں جانب کو a^{2}+aa+ba-3 بطور دوبارہ لکھنا ہو گا۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
a=-1 b=3
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b مثبت ہے، مثبت عدد میں منفی سے زیادہ مطلق قدر ہے۔ اس طرح کی جوڑی ہی سسٹم کا حل ہے۔
\left(a^{2}-a\right)+\left(3a-3\right)
a^{2}+2a-3 کو بطور \left(a^{2}-a\right)+\left(3a-3\right) دوبارہ تحریر کریں۔
a\left(a-1\right)+3\left(a-1\right)
پہلے گروپ میں a اور دوسرے میں 3 اجزائے ضربی میں تقسیم کریں۔
\left(a-1\right)\left(a+3\right)
عام اصطلاح a-1 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
a=1 a=-3
مساوات کا حل تلاش کرنے کیلئے، a-1=0 اور a+3=0 حل کریں۔
a^{2}+2a+1=4
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
a^{2}+2a+1-4=4-4
مساوات کے دونوں اطراف سے 4 منہا کریں۔
a^{2}+2a+1-4=0
4 کے خود سے منہا کرنے پر 0 ہی بچتا ہے۔
a^{2}+2a-3=0
4 کو 1 میں سے منہا کریں۔
a=\frac{-2±\sqrt{2^{2}-4\left(-3\right)}}{2}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے 1 کو، b کے لئے 2 کو اور c کے لئے -3 کو متبادل کریں۔
a=\frac{-2±\sqrt{4-4\left(-3\right)}}{2}
مربع 2۔
a=\frac{-2±\sqrt{4+12}}{2}
-4 کو -3 مرتبہ ضرب دیں۔
a=\frac{-2±\sqrt{16}}{2}
4 کو 12 میں شامل کریں۔
a=\frac{-2±4}{2}
16 کا جذر لیں۔
a=\frac{2}{2}
جب ± جمع ہو تو اب مساوات a=\frac{-2±4}{2} کو حل کریں۔ -2 کو 4 میں شامل کریں۔
a=1
2 کو 2 سے تقسیم کریں۔
a=-\frac{6}{2}
جب ± منفی ہو تو اب مساوات a=\frac{-2±4}{2} کو حل کریں۔ 4 کو -2 میں سے منہا کریں۔
a=-3
-6 کو 2 سے تقسیم کریں۔
a=1 a=-3
مساوات اب حل ہو گئی ہے۔
\left(a+1\right)^{2}=4
فیکٹر a^{2}+2a+1۔ عمومی طور پر جب x^{2}+bx+c ایک کامل مربع ہوگا تو اسے ہمیشہ \left(x+\frac{b}{2}\right)^{2} کی طرح فیکٹر کیا جا سکتا ہے۔
\sqrt{\left(a+1\right)^{2}}=\sqrt{4}
مساوات کی دونوں اطراف کا جذر لیں۔
a+1=2 a+1=-2
سادہ کریں۔
a=1 a=-3
مساوات کے دونوں اطراف سے 1 منہا کریں۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}