E کے لئے حل کریں
\left\{\begin{matrix}E=\frac{\left(\frac{m}{s}\right)^{2}g_{9}k}{5P}\text{, }&s\neq 0\text{ and }P\neq 0\\E\in \mathrm{R}\text{, }&\left(m=0\text{ or }g_{9}=0\text{ or }k=0\right)\text{ and }P=0\text{ and }s\neq 0\end{matrix}\right.
P کے لئے حل کریں
\left\{\begin{matrix}P=\frac{\left(\frac{m}{s}\right)^{2}g_{9}k}{5E}\text{, }&s\neq 0\text{ and }E\neq 0\\P\in \mathrm{R}\text{, }&\left(m=0\text{ or }g_{9}=0\text{ or }k=0\right)\text{ and }E=0\text{ and }s\neq 0\end{matrix}\right.
حصہ
کلپ بورڈ پر کاپی کیا گیا
EPs^{2}=0.5kg_{9}\times 0.8m\times 0.5m
s^{2} سے مساوات کی دونوں اطراف کو ضرب دیں۔
EPs^{2}=0.5kg_{9}\times 0.8m^{2}\times 0.5
m^{2} حاصل کرنے کے لئے m اور m کو ضرب دیں۔
EPs^{2}=0.4kg_{9}m^{2}\times 0.5
0.4 حاصل کرنے کے لئے 0.5 اور 0.8 کو ضرب دیں۔
EPs^{2}=0.2kg_{9}m^{2}
0.2 حاصل کرنے کے لئے 0.4 اور 0.5 کو ضرب دیں۔
Ps^{2}E=\frac{g_{9}km^{2}}{5}
مساوات معیاری وضع میں ہے۔
\frac{Ps^{2}E}{Ps^{2}}=\frac{g_{9}km^{2}}{5Ps^{2}}
Ps^{2} سے دونوں اطراف کو تقسیم کریں۔
E=\frac{g_{9}km^{2}}{5Ps^{2}}
Ps^{2} سے تقسیم کرنا Ps^{2} سے ضرب کو کالعدم کرتا ہے۔
EPs^{2}=0.5kg_{9}\times 0.8m\times 0.5m
s^{2} سے مساوات کی دونوں اطراف کو ضرب دیں۔
EPs^{2}=0.5kg_{9}\times 0.8m^{2}\times 0.5
m^{2} حاصل کرنے کے لئے m اور m کو ضرب دیں۔
EPs^{2}=0.4kg_{9}m^{2}\times 0.5
0.4 حاصل کرنے کے لئے 0.5 اور 0.8 کو ضرب دیں۔
EPs^{2}=0.2kg_{9}m^{2}
0.2 حاصل کرنے کے لئے 0.4 اور 0.5 کو ضرب دیں۔
Es^{2}P=\frac{g_{9}km^{2}}{5}
مساوات معیاری وضع میں ہے۔
\frac{Es^{2}P}{Es^{2}}=\frac{g_{9}km^{2}}{5Es^{2}}
Es^{2} سے دونوں اطراف کو تقسیم کریں۔
P=\frac{g_{9}km^{2}}{5Es^{2}}
Es^{2} سے تقسیم کرنا Es^{2} سے ضرب کو کالعدم کرتا ہے۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}