x کے لئے حل کریں
x=1
x=4
مخطط
حصہ
کلپ بورڈ پر کاپی کیا گیا
9x-4-x^{2}=4x
x^{2} کو دونوں طرف سے منہا کریں۔
9x-4-x^{2}-4x=0
4x کو دونوں طرف سے منہا کریں۔
5x-4-x^{2}=0
5x حاصل کرنے کے لئے 9x اور -4x کو یکجا کریں۔
-x^{2}+5x-4=0
معیاری وضع میں ڈالنے کیلئے پالینامیئل کو پھر ترتیب دیں۔ اصطلاحات کو سب سے زیادہ سے کم ترین پاور کے لحاظ سے ترتیب دیں۔
a+b=5 ab=-\left(-4\right)=4
مساوات حل کرنے کیلئے، گروپنگ کرکے بائیں جانب فیکٹر کریں۔ پہلے، بائیں جانب کو -x^{2}+ax+bx-4 بطور دوبارہ لکھنا ہو گا۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
1,4 2,2
چونکہ ab مثبت ہے، a اور b کی علامت یکساں ہے۔ چونکہ a+b مثبت ہے، a اور b بھی مثبت ہیں۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل 4 ہوتا ہے۔
1+4=5 2+2=4
ہر جوڑے کی رقم کا حساب لگائیں۔
a=4 b=1
حل ایک جوڑا ہے جو میزان 5 دیتا ہے۔
\left(-x^{2}+4x\right)+\left(x-4\right)
-x^{2}+5x-4 کو بطور \left(-x^{2}+4x\right)+\left(x-4\right) دوبارہ تحریر کریں۔
-x\left(x-4\right)+x-4
-x^{2}+4x میں -x اجزائے ضربی میں تقسیم کریں۔
\left(x-4\right)\left(-x+1\right)
عام اصطلاح x-4 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
x=4 x=1
مساوات کا حل تلاش کرنے کیلئے، x-4=0 اور -x+1=0 حل کریں۔
9x-4-x^{2}=4x
x^{2} کو دونوں طرف سے منہا کریں۔
9x-4-x^{2}-4x=0
4x کو دونوں طرف سے منہا کریں۔
5x-4-x^{2}=0
5x حاصل کرنے کے لئے 9x اور -4x کو یکجا کریں۔
-x^{2}+5x-4=0
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x=\frac{-5±\sqrt{5^{2}-4\left(-1\right)\left(-4\right)}}{2\left(-1\right)}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے -1 کو، b کے لئے 5 کو اور c کے لئے -4 کو متبادل کریں۔
x=\frac{-5±\sqrt{25-4\left(-1\right)\left(-4\right)}}{2\left(-1\right)}
مربع 5۔
x=\frac{-5±\sqrt{25+4\left(-4\right)}}{2\left(-1\right)}
-4 کو -1 مرتبہ ضرب دیں۔
x=\frac{-5±\sqrt{25-16}}{2\left(-1\right)}
4 کو -4 مرتبہ ضرب دیں۔
x=\frac{-5±\sqrt{9}}{2\left(-1\right)}
25 کو -16 میں شامل کریں۔
x=\frac{-5±3}{2\left(-1\right)}
9 کا جذر لیں۔
x=\frac{-5±3}{-2}
2 کو -1 مرتبہ ضرب دیں۔
x=-\frac{2}{-2}
جب ± جمع ہو تو اب مساوات x=\frac{-5±3}{-2} کو حل کریں۔ -5 کو 3 میں شامل کریں۔
x=1
-2 کو -2 سے تقسیم کریں۔
x=-\frac{8}{-2}
جب ± منفی ہو تو اب مساوات x=\frac{-5±3}{-2} کو حل کریں۔ 3 کو -5 میں سے منہا کریں۔
x=4
-8 کو -2 سے تقسیم کریں۔
x=1 x=4
مساوات اب حل ہو گئی ہے۔
9x-4-x^{2}=4x
x^{2} کو دونوں طرف سے منہا کریں۔
9x-4-x^{2}-4x=0
4x کو دونوں طرف سے منہا کریں۔
5x-4-x^{2}=0
5x حاصل کرنے کے لئے 9x اور -4x کو یکجا کریں۔
5x-x^{2}=4
دونوں اطراف میں 4 شامل کریں۔ کوئی بھی چیز جمع صفر ہو کر اپنا آپ دیتی ہے۔
-x^{2}+5x=4
اس قسم کی مربعی قواعد مربع مکمل کرنے کے بعد حل ہوسکتی ہیں۔ مربع کو مکمل کرنے کے لیئے، مساوات کو پہلے اس شکل میں ہونا ضروری ہے x^{2}+bx=c۔
\frac{-x^{2}+5x}{-1}=\frac{4}{-1}
-1 سے دونوں اطراف کو تقسیم کریں۔
x^{2}+\frac{5}{-1}x=\frac{4}{-1}
-1 سے تقسیم کرنا -1 سے ضرب کو کالعدم کرتا ہے۔
x^{2}-5x=\frac{4}{-1}
5 کو -1 سے تقسیم کریں۔
x^{2}-5x=-4
4 کو -1 سے تقسیم کریں۔
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-4+\left(-\frac{5}{2}\right)^{2}
2 سے -\frac{5}{2} حاصل کرنے کے لیے، -5 کو x اصطلاح کے کو ایفیشنٹ سے تقسیم کریں۔ پھر -\frac{5}{2} کے مربع کو مساوات کی دونوں جانب جمع کریں۔ یہ مرحلہ مساوات کی بائیں ہاتھ کی جانب کو ایک مکمل مربع بناتا ہے۔
x^{2}-5x+\frac{25}{4}=-4+\frac{25}{4}
کسر کا نیومیریٹر اور ڈینومینیٹر دونوں پر مربع لگا کر -\frac{5}{2} کو مربع کریں۔
x^{2}-5x+\frac{25}{4}=\frac{9}{4}
-4 کو \frac{25}{4} میں شامل کریں۔
\left(x-\frac{5}{2}\right)^{2}=\frac{9}{4}
فیکٹر x^{2}-5x+\frac{25}{4}۔ عمومی طور پر جب x^{2}+bx+c ایک کامل مربع ہوگا تو اسے ہمیشہ \left(x+\frac{b}{2}\right)^{2} کی طرح فیکٹر کیا جا سکتا ہے۔
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
مساوات کی دونوں اطراف کا جذر لیں۔
x-\frac{5}{2}=\frac{3}{2} x-\frac{5}{2}=-\frac{3}{2}
سادہ کریں۔
x=4 x=1
مساوات کے دونوں اطراف سے \frac{5}{2} کو شامل کریں۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}