اہم مواد پر چھوڑ دیں
عنصر
Tick mark Image
جائزہ ليں
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

9\left(x^{2}+7x-8\right)
اجزائے ضربی میں تقسیم کریں 9۔
a+b=7 ab=1\left(-8\right)=-8
x^{2}+7x-8 پر غورکریں۔ گروپنگ کرکے اظہار فیکٹر کریں۔ پہلے، اظہار x^{2}+ax+bx-8 کے طور پر دوبارہ لکھنے کی ضرورت ہے۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
-1,8 -2,4
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b مثبت ہے، مثبت عدد میں منفی سے زیادہ مطلق قدر ہے۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل -8 ہوتا ہے۔
-1+8=7 -2+4=2
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-1 b=8
حل ایک جوڑا ہے جو میزان 7 دیتا ہے۔
\left(x^{2}-x\right)+\left(8x-8\right)
x^{2}+7x-8 کو بطور \left(x^{2}-x\right)+\left(8x-8\right) دوبارہ تحریر کریں۔
x\left(x-1\right)+8\left(x-1\right)
پہلے گروپ میں x اور دوسرے میں 8 اجزائے ضربی میں تقسیم کریں۔
\left(x-1\right)\left(x+8\right)
عام اصطلاح x-1 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
9\left(x-1\right)\left(x+8\right)
مکمل منقسم شدہ اظہار کو دوبارہ لکھیں۔
9x^{2}+63x-72=0
دو درجی متعدد رقمی کو استحالہ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) کا استعمال کر کے اجزائے ضربی میں تبدیل کیا جا سکتا ہے، جہاں x_{1} اور x_{2} دو درجی مساوات ax^{2}+bx+c=0 کے حل ہیں۔
x=\frac{-63±\sqrt{63^{2}-4\times 9\left(-72\right)}}{2\times 9}
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x=\frac{-63±\sqrt{3969-4\times 9\left(-72\right)}}{2\times 9}
مربع 63۔
x=\frac{-63±\sqrt{3969-36\left(-72\right)}}{2\times 9}
-4 کو 9 مرتبہ ضرب دیں۔
x=\frac{-63±\sqrt{3969+2592}}{2\times 9}
-36 کو -72 مرتبہ ضرب دیں۔
x=\frac{-63±\sqrt{6561}}{2\times 9}
3969 کو 2592 میں شامل کریں۔
x=\frac{-63±81}{2\times 9}
6561 کا جذر لیں۔
x=\frac{-63±81}{18}
2 کو 9 مرتبہ ضرب دیں۔
x=\frac{18}{18}
جب ± جمع ہو تو اب مساوات x=\frac{-63±81}{18} کو حل کریں۔ -63 کو 81 میں شامل کریں۔
x=1
18 کو 18 سے تقسیم کریں۔
x=-\frac{144}{18}
جب ± منفی ہو تو اب مساوات x=\frac{-63±81}{18} کو حل کریں۔ 81 کو -63 میں سے منہا کریں۔
x=-8
-144 کو 18 سے تقسیم کریں۔
9x^{2}+63x-72=9\left(x-1\right)\left(x-\left(-8\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) کا استعمال کر کے اصل اظہار کو اجزائے ضربی میں بدلیں۔ x_{1} کے متبادل 1 اور x_{2} کے متبادل -8 رکھیں۔
9x^{2}+63x-72=9\left(x-1\right)\left(x+8\right)
p-\left(-q\right) سے p+q کے فارم کے تمام اظہارات کو آسان بنائیں۔