اہم مواد پر چھوڑ دیں
t کے لئے حل کریں
Tick mark Image

ویب سرچ سے اسی طرح کے مسائل

حصہ

9t^{2}+216t+10648=0
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
t=\frac{-216±\sqrt{216^{2}-4\times 9\times 10648}}{2\times 9}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے 9 کو، b کے لئے 216 کو اور c کے لئے 10648 کو متبادل کریں۔
t=\frac{-216±\sqrt{46656-4\times 9\times 10648}}{2\times 9}
مربع 216۔
t=\frac{-216±\sqrt{46656-36\times 10648}}{2\times 9}
-4 کو 9 مرتبہ ضرب دیں۔
t=\frac{-216±\sqrt{46656-383328}}{2\times 9}
-36 کو 10648 مرتبہ ضرب دیں۔
t=\frac{-216±\sqrt{-336672}}{2\times 9}
46656 کو -383328 میں شامل کریں۔
t=\frac{-216±12\sqrt{2338}i}{2\times 9}
-336672 کا جذر لیں۔
t=\frac{-216±12\sqrt{2338}i}{18}
2 کو 9 مرتبہ ضرب دیں۔
t=\frac{-216+12\sqrt{2338}i}{18}
جب ± جمع ہو تو اب مساوات t=\frac{-216±12\sqrt{2338}i}{18} کو حل کریں۔ -216 کو 12i\sqrt{2338} میں شامل کریں۔
t=\frac{2\sqrt{2338}i}{3}-12
-216+12i\sqrt{2338} کو 18 سے تقسیم کریں۔
t=\frac{-12\sqrt{2338}i-216}{18}
جب ± منفی ہو تو اب مساوات t=\frac{-216±12\sqrt{2338}i}{18} کو حل کریں۔ 12i\sqrt{2338} کو -216 میں سے منہا کریں۔
t=-\frac{2\sqrt{2338}i}{3}-12
-216-12i\sqrt{2338} کو 18 سے تقسیم کریں۔
t=\frac{2\sqrt{2338}i}{3}-12 t=-\frac{2\sqrt{2338}i}{3}-12
مساوات اب حل ہو گئی ہے۔
9t^{2}+216t+10648=0
اس قسم کی مربعی قواعد مربع مکمل کرنے کے بعد حل ہوسکتی ہیں۔ مربع کو مکمل کرنے کے لیئے، مساوات کو پہلے اس شکل میں ہونا ضروری ہے x^{2}+bx=c۔
9t^{2}+216t+10648-10648=-10648
مساوات کے دونوں اطراف سے 10648 منہا کریں۔
9t^{2}+216t=-10648
10648 کے خود سے منہا کرنے پر 0 ہی بچتا ہے۔
\frac{9t^{2}+216t}{9}=-\frac{10648}{9}
9 سے دونوں اطراف کو تقسیم کریں۔
t^{2}+\frac{216}{9}t=-\frac{10648}{9}
9 سے تقسیم کرنا 9 سے ضرب کو کالعدم کرتا ہے۔
t^{2}+24t=-\frac{10648}{9}
216 کو 9 سے تقسیم کریں۔
t^{2}+24t+12^{2}=-\frac{10648}{9}+12^{2}
2 سے 12 حاصل کرنے کے لیے، 24 کو x اصطلاح کے کو ایفیشنٹ سے تقسیم کریں۔ پھر 12 کے مربع کو مساوات کی دونوں جانب جمع کریں۔ یہ مرحلہ مساوات کی بائیں ہاتھ کی جانب کو ایک مکمل مربع بناتا ہے۔
t^{2}+24t+144=-\frac{10648}{9}+144
مربع 12۔
t^{2}+24t+144=-\frac{9352}{9}
-\frac{10648}{9} کو 144 میں شامل کریں۔
\left(t+12\right)^{2}=-\frac{9352}{9}
فیکٹر t^{2}+24t+144۔ عمومی طور پر جب x^{2}+bx+c ایک کامل مربع ہوگا تو اسے ہمیشہ \left(x+\frac{b}{2}\right)^{2} کی طرح فیکٹر کیا جا سکتا ہے۔
\sqrt{\left(t+12\right)^{2}}=\sqrt{-\frac{9352}{9}}
مساوات کی دونوں اطراف کا جذر لیں۔
t+12=\frac{2\sqrt{2338}i}{3} t+12=-\frac{2\sqrt{2338}i}{3}
سادہ کریں۔
t=\frac{2\sqrt{2338}i}{3}-12 t=-\frac{2\sqrt{2338}i}{3}-12
مساوات کے دونوں اطراف سے 12 منہا کریں۔