عنصر
2\left(z-5\right)\left(4z+3\right)z^{2}
جائزہ ليں
2\left(z-5\right)\left(4z+3\right)z^{2}
حصہ
کلپ بورڈ پر کاپی کیا گیا
2\left(4z^{4}-17z^{3}-15z^{2}\right)
اجزائے ضربی میں تقسیم کریں 2۔
z^{2}\left(4z^{2}-17z-15\right)
4z^{4}-17z^{3}-15z^{2} پر غورکریں۔ اجزائے ضربی میں تقسیم کریں z^{2}۔
a+b=-17 ab=4\left(-15\right)=-60
4z^{2}-17z-15 پر غورکریں۔ گروپنگ کرکے اظہار فیکٹر کریں۔ پہلے، اظہار 4z^{2}+az+bz-15 کے طور پر دوبارہ لکھنے کی ضرورت ہے۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
1,-60 2,-30 3,-20 4,-15 5,-12 6,-10
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b منفی ہے، منفی عدد میں مثبت سے زیادہ مطلق قدر ہے۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل -60 ہوتا ہے۔
1-60=-59 2-30=-28 3-20=-17 4-15=-11 5-12=-7 6-10=-4
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-20 b=3
حل ایک جوڑا ہے جو میزان -17 دیتا ہے۔
\left(4z^{2}-20z\right)+\left(3z-15\right)
4z^{2}-17z-15 کو بطور \left(4z^{2}-20z\right)+\left(3z-15\right) دوبارہ تحریر کریں۔
4z\left(z-5\right)+3\left(z-5\right)
پہلے گروپ میں 4z اور دوسرے میں 3 اجزائے ضربی میں تقسیم کریں۔
\left(z-5\right)\left(4z+3\right)
عام اصطلاح z-5 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
2z^{2}\left(z-5\right)\left(4z+3\right)
مکمل منقسم شدہ اظہار کو دوبارہ لکھیں۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}