x کے لئے حل کریں
x = \frac{11}{7} = 1\frac{4}{7} \approx 1.571428571
x=0
مخطط
حصہ
کلپ بورڈ پر کاپی کیا گیا
x\left(7x-11\right)=0
اجزائے ضربی میں تقسیم کریں x۔
x=0 x=\frac{11}{7}
مساوات کا حل تلاش کرنے کیلئے، x=0 اور 7x-11=0 حل کریں۔
7x^{2}-11x=0
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}}}{2\times 7}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے 7 کو، b کے لئے -11 کو اور c کے لئے 0 کو متبادل کریں۔
x=\frac{-\left(-11\right)±11}{2\times 7}
\left(-11\right)^{2} کا جذر لیں۔
x=\frac{11±11}{2\times 7}
-11 کا مُخالف 11 ہے۔
x=\frac{11±11}{14}
2 کو 7 مرتبہ ضرب دیں۔
x=\frac{22}{14}
جب ± جمع ہو تو اب مساوات x=\frac{11±11}{14} کو حل کریں۔ 11 کو 11 میں شامل کریں۔
x=\frac{11}{7}
2 کو اخذ اور منسوخ کرتے ہوئے \frac{22}{14} کسر کو کم تر اصطلاحات تک گھٹائیں۔
x=\frac{0}{14}
جب ± منفی ہو تو اب مساوات x=\frac{11±11}{14} کو حل کریں۔ 11 کو 11 میں سے منہا کریں۔
x=0
0 کو 14 سے تقسیم کریں۔
x=\frac{11}{7} x=0
مساوات اب حل ہو گئی ہے۔
7x^{2}-11x=0
اس قسم کی مربعی قواعد مربع مکمل کرنے کے بعد حل ہوسکتی ہیں۔ مربع کو مکمل کرنے کے لیئے، مساوات کو پہلے اس شکل میں ہونا ضروری ہے x^{2}+bx=c۔
\frac{7x^{2}-11x}{7}=\frac{0}{7}
7 سے دونوں اطراف کو تقسیم کریں۔
x^{2}-\frac{11}{7}x=\frac{0}{7}
7 سے تقسیم کرنا 7 سے ضرب کو کالعدم کرتا ہے۔
x^{2}-\frac{11}{7}x=0
0 کو 7 سے تقسیم کریں۔
x^{2}-\frac{11}{7}x+\left(-\frac{11}{14}\right)^{2}=\left(-\frac{11}{14}\right)^{2}
2 سے -\frac{11}{14} حاصل کرنے کے لیے، -\frac{11}{7} کو x اصطلاح کے کو ایفیشنٹ سے تقسیم کریں۔ پھر -\frac{11}{14} کے مربع کو مساوات کی دونوں جانب جمع کریں۔ یہ مرحلہ مساوات کی بائیں ہاتھ کی جانب کو ایک مکمل مربع بناتا ہے۔
x^{2}-\frac{11}{7}x+\frac{121}{196}=\frac{121}{196}
کسر کا نیومیریٹر اور ڈینومینیٹر دونوں پر مربع لگا کر -\frac{11}{14} کو مربع کریں۔
\left(x-\frac{11}{14}\right)^{2}=\frac{121}{196}
فیکٹر x^{2}-\frac{11}{7}x+\frac{121}{196}۔ عمومی طور پر جب x^{2}+bx+c ایک کامل مربع ہوگا تو اسے ہمیشہ \left(x+\frac{b}{2}\right)^{2} کی طرح فیکٹر کیا جا سکتا ہے۔
\sqrt{\left(x-\frac{11}{14}\right)^{2}}=\sqrt{\frac{121}{196}}
مساوات کی دونوں اطراف کا جذر لیں۔
x-\frac{11}{14}=\frac{11}{14} x-\frac{11}{14}=-\frac{11}{14}
سادہ کریں۔
x=\frac{11}{7} x=0
مساوات کے دونوں اطراف سے \frac{11}{14} کو شامل کریں۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}