عنصر
6\left(x-4\right)\left(x-1\right)
جائزہ ليں
6\left(x-4\right)\left(x-1\right)
مخطط
حصہ
کلپ بورڈ پر کاپی کیا گیا
6\left(x^{2}-5x+4\right)
اجزائے ضربی میں تقسیم کریں 6۔
a+b=-5 ab=1\times 4=4
x^{2}-5x+4 پر غورکریں۔ گروپنگ کرکے اظہار فیکٹر کریں۔ پہلے، اظہار x^{2}+ax+bx+4 کے طور پر دوبارہ لکھنے کی ضرورت ہے۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
-1,-4 -2,-2
چونکہ ab مثبت ہے، a اور b کی علامت یکساں ہے۔ چونکہ a+b منفی ہے، a اور b بھی منفی ہیں۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل 4 ہوتا ہے۔
-1-4=-5 -2-2=-4
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-4 b=-1
حل ایک جوڑا ہے جو میزان -5 دیتا ہے۔
\left(x^{2}-4x\right)+\left(-x+4\right)
x^{2}-5x+4 کو بطور \left(x^{2}-4x\right)+\left(-x+4\right) دوبارہ تحریر کریں۔
x\left(x-4\right)-\left(x-4\right)
پہلے گروپ میں x اور دوسرے میں -1 اجزائے ضربی میں تقسیم کریں۔
\left(x-4\right)\left(x-1\right)
عام اصطلاح x-4 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
6\left(x-4\right)\left(x-1\right)
مکمل منقسم شدہ اظہار کو دوبارہ لکھیں۔
6x^{2}-30x+24=0
دو درجی متعدد رقمی کو استحالہ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) کا استعمال کر کے اجزائے ضربی میں تبدیل کیا جا سکتا ہے، جہاں x_{1} اور x_{2} دو درجی مساوات ax^{2}+bx+c=0 کے حل ہیں۔
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 6\times 24}}{2\times 6}
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x=\frac{-\left(-30\right)±\sqrt{900-4\times 6\times 24}}{2\times 6}
مربع -30۔
x=\frac{-\left(-30\right)±\sqrt{900-24\times 24}}{2\times 6}
-4 کو 6 مرتبہ ضرب دیں۔
x=\frac{-\left(-30\right)±\sqrt{900-576}}{2\times 6}
-24 کو 24 مرتبہ ضرب دیں۔
x=\frac{-\left(-30\right)±\sqrt{324}}{2\times 6}
900 کو -576 میں شامل کریں۔
x=\frac{-\left(-30\right)±18}{2\times 6}
324 کا جذر لیں۔
x=\frac{30±18}{2\times 6}
-30 کا مُخالف 30 ہے۔
x=\frac{30±18}{12}
2 کو 6 مرتبہ ضرب دیں۔
x=\frac{48}{12}
جب ± جمع ہو تو اب مساوات x=\frac{30±18}{12} کو حل کریں۔ 30 کو 18 میں شامل کریں۔
x=4
48 کو 12 سے تقسیم کریں۔
x=\frac{12}{12}
جب ± منفی ہو تو اب مساوات x=\frac{30±18}{12} کو حل کریں۔ 18 کو 30 میں سے منہا کریں۔
x=1
12 کو 12 سے تقسیم کریں۔
6x^{2}-30x+24=6\left(x-4\right)\left(x-1\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) کا استعمال کر کے اصل اظہار کو اجزائے ضربی میں بدلیں۔ x_{1} کے متبادل 4 اور x_{2} کے متبادل 1 رکھیں۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}