x کے لئے حل کریں
x=-\frac{2}{3}\approx -0.666666667
x=-\frac{1}{2}=-0.5
مخطط
حصہ
کلپ بورڈ پر کاپی کیا گیا
a+b=7 ab=6\times 2=12
مساوات حل کرنے کیلئے، گروپنگ کرکے بائیں جانب فیکٹر کریں۔ پہلے، بائیں جانب کو 6x^{2}+ax+bx+2 بطور دوبارہ لکھنا ہو گا۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
1,12 2,6 3,4
چونکہ ab مثبت ہے، a اور b کی علامت یکساں ہے۔ چونکہ a+b مثبت ہے، a اور b بھی مثبت ہیں۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل 12 ہوتا ہے۔
1+12=13 2+6=8 3+4=7
ہر جوڑے کی رقم کا حساب لگائیں۔
a=3 b=4
حل ایک جوڑا ہے جو میزان 7 دیتا ہے۔
\left(6x^{2}+3x\right)+\left(4x+2\right)
6x^{2}+7x+2 کو بطور \left(6x^{2}+3x\right)+\left(4x+2\right) دوبارہ تحریر کریں۔
3x\left(2x+1\right)+2\left(2x+1\right)
پہلے گروپ میں 3x اور دوسرے میں 2 اجزائے ضربی میں تقسیم کریں۔
\left(2x+1\right)\left(3x+2\right)
عام اصطلاح 2x+1 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
x=-\frac{1}{2} x=-\frac{2}{3}
مساوات کا حل تلاش کرنے کیلئے، 2x+1=0 اور 3x+2=0 حل کریں۔
6x^{2}+7x+2=0
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x=\frac{-7±\sqrt{7^{2}-4\times 6\times 2}}{2\times 6}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے 6 کو، b کے لئے 7 کو اور c کے لئے 2 کو متبادل کریں۔
x=\frac{-7±\sqrt{49-4\times 6\times 2}}{2\times 6}
مربع 7۔
x=\frac{-7±\sqrt{49-24\times 2}}{2\times 6}
-4 کو 6 مرتبہ ضرب دیں۔
x=\frac{-7±\sqrt{49-48}}{2\times 6}
-24 کو 2 مرتبہ ضرب دیں۔
x=\frac{-7±\sqrt{1}}{2\times 6}
49 کو -48 میں شامل کریں۔
x=\frac{-7±1}{2\times 6}
1 کا جذر لیں۔
x=\frac{-7±1}{12}
2 کو 6 مرتبہ ضرب دیں۔
x=-\frac{6}{12}
جب ± جمع ہو تو اب مساوات x=\frac{-7±1}{12} کو حل کریں۔ -7 کو 1 میں شامل کریں۔
x=-\frac{1}{2}
6 کو اخذ اور منسوخ کرتے ہوئے \frac{-6}{12} کسر کو کم تر اصطلاحات تک گھٹائیں۔
x=-\frac{8}{12}
جب ± منفی ہو تو اب مساوات x=\frac{-7±1}{12} کو حل کریں۔ 1 کو -7 میں سے منہا کریں۔
x=-\frac{2}{3}
4 کو اخذ اور منسوخ کرتے ہوئے \frac{-8}{12} کسر کو کم تر اصطلاحات تک گھٹائیں۔
x=-\frac{1}{2} x=-\frac{2}{3}
مساوات اب حل ہو گئی ہے۔
6x^{2}+7x+2=0
اس قسم کی مربعی قواعد مربع مکمل کرنے کے بعد حل ہوسکتی ہیں۔ مربع کو مکمل کرنے کے لیئے، مساوات کو پہلے اس شکل میں ہونا ضروری ہے x^{2}+bx=c۔
6x^{2}+7x+2-2=-2
مساوات کے دونوں اطراف سے 2 منہا کریں۔
6x^{2}+7x=-2
2 کے خود سے منہا کرنے پر 0 ہی بچتا ہے۔
\frac{6x^{2}+7x}{6}=-\frac{2}{6}
6 سے دونوں اطراف کو تقسیم کریں۔
x^{2}+\frac{7}{6}x=-\frac{2}{6}
6 سے تقسیم کرنا 6 سے ضرب کو کالعدم کرتا ہے۔
x^{2}+\frac{7}{6}x=-\frac{1}{3}
2 کو اخذ اور منسوخ کرتے ہوئے \frac{-2}{6} کسر کو کم تر اصطلاحات تک گھٹائیں۔
x^{2}+\frac{7}{6}x+\left(\frac{7}{12}\right)^{2}=-\frac{1}{3}+\left(\frac{7}{12}\right)^{2}
2 سے \frac{7}{12} حاصل کرنے کے لیے، \frac{7}{6} کو x اصطلاح کے کو ایفیشنٹ سے تقسیم کریں۔ پھر \frac{7}{12} کے مربع کو مساوات کی دونوں جانب جمع کریں۔ یہ مرحلہ مساوات کی بائیں ہاتھ کی جانب کو ایک مکمل مربع بناتا ہے۔
x^{2}+\frac{7}{6}x+\frac{49}{144}=-\frac{1}{3}+\frac{49}{144}
کسر کا نیومیریٹر اور ڈینومینیٹر دونوں پر مربع لگا کر \frac{7}{12} کو مربع کریں۔
x^{2}+\frac{7}{6}x+\frac{49}{144}=\frac{1}{144}
ایک مشترکہ ڈینومینیٹر کو ڈھونڈتے ہوئے اور نیومیریٹر کو شامل کر کے -\frac{1}{3} کو \frac{49}{144} میں شامل کریں۔ اور پھر کسر کو اگر ممکن ہو تو پست ترین اصطلاح تک گھٹائیں۔
\left(x+\frac{7}{12}\right)^{2}=\frac{1}{144}
فیکٹر x^{2}+\frac{7}{6}x+\frac{49}{144}۔ عمومی طور پر جب x^{2}+bx+c ایک کامل مربع ہوگا تو اسے ہمیشہ \left(x+\frac{b}{2}\right)^{2} کی طرح فیکٹر کیا جا سکتا ہے۔
\sqrt{\left(x+\frac{7}{12}\right)^{2}}=\sqrt{\frac{1}{144}}
مساوات کی دونوں اطراف کا جذر لیں۔
x+\frac{7}{12}=\frac{1}{12} x+\frac{7}{12}=-\frac{1}{12}
سادہ کریں۔
x=-\frac{1}{2} x=-\frac{2}{3}
مساوات کے دونوں اطراف سے \frac{7}{12} منہا کریں۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}