اہم مواد پر چھوڑ دیں
عنصر
Tick mark Image
جائزہ ليں
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

a+b=11 ab=6\left(-10\right)=-60
گروپنگ کرکے اظہار فیکٹر کریں۔ پہلے، اظہار 6x^{2}+ax+bx-10 کے طور پر دوبارہ لکھنے کی ضرورت ہے۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
-1,60 -2,30 -3,20 -4,15 -5,12 -6,10
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b مثبت ہے، مثبت عدد میں منفی سے زیادہ مطلق قدر ہے۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل -60 ہوتا ہے۔
-1+60=59 -2+30=28 -3+20=17 -4+15=11 -5+12=7 -6+10=4
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-4 b=15
حل ایک جوڑا ہے جو میزان 11 دیتا ہے۔
\left(6x^{2}-4x\right)+\left(15x-10\right)
6x^{2}+11x-10 کو بطور \left(6x^{2}-4x\right)+\left(15x-10\right) دوبارہ تحریر کریں۔
2x\left(3x-2\right)+5\left(3x-2\right)
پہلے گروپ میں 2x اور دوسرے میں 5 اجزائے ضربی میں تقسیم کریں۔
\left(3x-2\right)\left(2x+5\right)
عام اصطلاح 3x-2 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
6x^{2}+11x-10=0
دو درجی متعدد رقمی کو استحالہ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) کا استعمال کر کے اجزائے ضربی میں تبدیل کیا جا سکتا ہے، جہاں x_{1} اور x_{2} دو درجی مساوات ax^{2}+bx+c=0 کے حل ہیں۔
x=\frac{-11±\sqrt{11^{2}-4\times 6\left(-10\right)}}{2\times 6}
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x=\frac{-11±\sqrt{121-4\times 6\left(-10\right)}}{2\times 6}
مربع 11۔
x=\frac{-11±\sqrt{121-24\left(-10\right)}}{2\times 6}
-4 کو 6 مرتبہ ضرب دیں۔
x=\frac{-11±\sqrt{121+240}}{2\times 6}
-24 کو -10 مرتبہ ضرب دیں۔
x=\frac{-11±\sqrt{361}}{2\times 6}
121 کو 240 میں شامل کریں۔
x=\frac{-11±19}{2\times 6}
361 کا جذر لیں۔
x=\frac{-11±19}{12}
2 کو 6 مرتبہ ضرب دیں۔
x=\frac{8}{12}
جب ± جمع ہو تو اب مساوات x=\frac{-11±19}{12} کو حل کریں۔ -11 کو 19 میں شامل کریں۔
x=\frac{2}{3}
4 کو اخذ اور منسوخ کرتے ہوئے \frac{8}{12} کسر کو کم تر اصطلاحات تک گھٹائیں۔
x=-\frac{30}{12}
جب ± منفی ہو تو اب مساوات x=\frac{-11±19}{12} کو حل کریں۔ 19 کو -11 میں سے منہا کریں۔
x=-\frac{5}{2}
6 کو اخذ اور منسوخ کرتے ہوئے \frac{-30}{12} کسر کو کم تر اصطلاحات تک گھٹائیں۔
6x^{2}+11x-10=6\left(x-\frac{2}{3}\right)\left(x-\left(-\frac{5}{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) کا استعمال کر کے اصل اظہار کو اجزائے ضربی میں بدلیں۔ x_{1} کے متبادل \frac{2}{3} اور x_{2} کے متبادل -\frac{5}{2} رکھیں۔
6x^{2}+11x-10=6\left(x-\frac{2}{3}\right)\left(x+\frac{5}{2}\right)
p-\left(-q\right) سے p+q کے فارم کے تمام اظہارات کو آسان بنائیں۔
6x^{2}+11x-10=6\times \frac{3x-2}{3}\left(x+\frac{5}{2}\right)
ایک مشترک ڈینومینیٹر معلوم کر کے اور نیومیریٹر کو منہا کر کے \frac{2}{3} کو x میں سے منہا کریں۔ اور پھر کسر کو اگر ممکن ہو تو اس کی کم ترین اصطلاحات میں سے کم کریں۔
6x^{2}+11x-10=6\times \frac{3x-2}{3}\times \frac{2x+5}{2}
ایک مشترکہ ڈینومینیٹر کو ڈھونڈتے ہوئے اور نیومیریٹر کو شامل کر کے \frac{5}{2} کو x میں شامل کریں۔ اور پھر کسر کو اگر ممکن ہو تو پست ترین اصطلاح تک گھٹائیں۔
6x^{2}+11x-10=6\times \frac{\left(3x-2\right)\left(2x+5\right)}{3\times 2}
نیومیریٹر کو نیومیریٹر بار اور ڈینومینیٹر کو ڈینومینیٹر بار ضرب دے کر \frac{2x+5}{2} کو \frac{3x-2}{3} مرتبہ ضرب دیں۔ اور پھر کسر کو اگر ممکن ہو تو کم ترین اصطلاح تک کم کریں۔
6x^{2}+11x-10=6\times \frac{\left(3x-2\right)\left(2x+5\right)}{6}
3 کو 2 مرتبہ ضرب دیں۔
6x^{2}+11x-10=\left(3x-2\right)\left(2x+5\right)
6 اور 6 میں عظیم عام عامل 6 کو منسوخ کریں۔