x کے لئے حل کریں
x = -\frac{7}{2} = -3\frac{1}{2} = -3.5
x=\frac{1}{3}\approx 0.333333333
مخطط
حصہ
کلپ بورڈ پر کاپی کیا گیا
a+b=19 ab=6\left(-7\right)=-42
مساوات حل کرنے کیلئے، گروپنگ کرکے بائیں جانب فیکٹر کریں۔ پہلے، بائیں جانب کو 6x^{2}+ax+bx-7 بطور دوبارہ لکھنا ہو گا۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
-1,42 -2,21 -3,14 -6,7
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b مثبت ہے، مثبت عدد میں منفی سے زیادہ مطلق قدر ہے۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل -42 ہوتا ہے۔
-1+42=41 -2+21=19 -3+14=11 -6+7=1
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-2 b=21
حل ایک جوڑا ہے جو میزان 19 دیتا ہے۔
\left(6x^{2}-2x\right)+\left(21x-7\right)
6x^{2}+19x-7 کو بطور \left(6x^{2}-2x\right)+\left(21x-7\right) دوبارہ تحریر کریں۔
2x\left(3x-1\right)+7\left(3x-1\right)
پہلے گروپ میں 2x اور دوسرے میں 7 اجزائے ضربی میں تقسیم کریں۔
\left(3x-1\right)\left(2x+7\right)
عام اصطلاح 3x-1 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
x=\frac{1}{3} x=-\frac{7}{2}
مساوات کا حل تلاش کرنے کیلئے، 3x-1=0 اور 2x+7=0 حل کریں۔
6x^{2}+19x-7=0
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x=\frac{-19±\sqrt{19^{2}-4\times 6\left(-7\right)}}{2\times 6}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے 6 کو، b کے لئے 19 کو اور c کے لئے -7 کو متبادل کریں۔
x=\frac{-19±\sqrt{361-4\times 6\left(-7\right)}}{2\times 6}
مربع 19۔
x=\frac{-19±\sqrt{361-24\left(-7\right)}}{2\times 6}
-4 کو 6 مرتبہ ضرب دیں۔
x=\frac{-19±\sqrt{361+168}}{2\times 6}
-24 کو -7 مرتبہ ضرب دیں۔
x=\frac{-19±\sqrt{529}}{2\times 6}
361 کو 168 میں شامل کریں۔
x=\frac{-19±23}{2\times 6}
529 کا جذر لیں۔
x=\frac{-19±23}{12}
2 کو 6 مرتبہ ضرب دیں۔
x=\frac{4}{12}
جب ± جمع ہو تو اب مساوات x=\frac{-19±23}{12} کو حل کریں۔ -19 کو 23 میں شامل کریں۔
x=\frac{1}{3}
4 کو اخذ اور منسوخ کرتے ہوئے \frac{4}{12} کسر کو کم تر اصطلاحات تک گھٹائیں۔
x=-\frac{42}{12}
جب ± منفی ہو تو اب مساوات x=\frac{-19±23}{12} کو حل کریں۔ 23 کو -19 میں سے منہا کریں۔
x=-\frac{7}{2}
6 کو اخذ اور منسوخ کرتے ہوئے \frac{-42}{12} کسر کو کم تر اصطلاحات تک گھٹائیں۔
x=\frac{1}{3} x=-\frac{7}{2}
مساوات اب حل ہو گئی ہے۔
6x^{2}+19x-7=0
اس قسم کی مربعی قواعد مربع مکمل کرنے کے بعد حل ہوسکتی ہیں۔ مربع کو مکمل کرنے کے لیئے، مساوات کو پہلے اس شکل میں ہونا ضروری ہے x^{2}+bx=c۔
6x^{2}+19x-7-\left(-7\right)=-\left(-7\right)
مساوات کے دونوں اطراف سے 7 کو شامل کریں۔
6x^{2}+19x=-\left(-7\right)
-7 کے خود سے منہا کرنے پر 0 ہی بچتا ہے۔
6x^{2}+19x=7
-7 کو 0 میں سے منہا کریں۔
\frac{6x^{2}+19x}{6}=\frac{7}{6}
6 سے دونوں اطراف کو تقسیم کریں۔
x^{2}+\frac{19}{6}x=\frac{7}{6}
6 سے تقسیم کرنا 6 سے ضرب کو کالعدم کرتا ہے۔
x^{2}+\frac{19}{6}x+\left(\frac{19}{12}\right)^{2}=\frac{7}{6}+\left(\frac{19}{12}\right)^{2}
2 سے \frac{19}{12} حاصل کرنے کے لیے، \frac{19}{6} کو x اصطلاح کے کو ایفیشنٹ سے تقسیم کریں۔ پھر \frac{19}{12} کے مربع کو مساوات کی دونوں جانب جمع کریں۔ یہ مرحلہ مساوات کی بائیں ہاتھ کی جانب کو ایک مکمل مربع بناتا ہے۔
x^{2}+\frac{19}{6}x+\frac{361}{144}=\frac{7}{6}+\frac{361}{144}
کسر کا نیومیریٹر اور ڈینومینیٹر دونوں پر مربع لگا کر \frac{19}{12} کو مربع کریں۔
x^{2}+\frac{19}{6}x+\frac{361}{144}=\frac{529}{144}
ایک مشترکہ ڈینومینیٹر کو ڈھونڈتے ہوئے اور نیومیریٹر کو شامل کر کے \frac{7}{6} کو \frac{361}{144} میں شامل کریں۔ اور پھر کسر کو اگر ممکن ہو تو پست ترین اصطلاح تک گھٹائیں۔
\left(x+\frac{19}{12}\right)^{2}=\frac{529}{144}
فیکٹر x^{2}+\frac{19}{6}x+\frac{361}{144}۔ عمومی طور پر جب x^{2}+bx+c ایک کامل مربع ہوگا تو اسے ہمیشہ \left(x+\frac{b}{2}\right)^{2} کی طرح فیکٹر کیا جا سکتا ہے۔
\sqrt{\left(x+\frac{19}{12}\right)^{2}}=\sqrt{\frac{529}{144}}
مساوات کی دونوں اطراف کا جذر لیں۔
x+\frac{19}{12}=\frac{23}{12} x+\frac{19}{12}=-\frac{23}{12}
سادہ کریں۔
x=\frac{1}{3} x=-\frac{7}{2}
مساوات کے دونوں اطراف سے \frac{19}{12} منہا کریں۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}