جائزہ ليں
-\frac{5\sqrt{2}}{2}\approx -3.535533906
حصہ
کلپ بورڈ پر کاپی کیا گیا
6\times \frac{\sqrt{1}}{\sqrt{8}}-\sqrt{32}
تقسیم \sqrt{\frac{1}{8}} کے جذر المربع کو جذر المربعوں کی تقسیم \frac{\sqrt{1}}{\sqrt{8}} کے طور پر دوبارہ لکھیں۔
6\times \frac{1}{\sqrt{8}}-\sqrt{32}
1 کے جذر کا حساب کریں اور 1 حاصل کریں۔
6\times \frac{1}{2\sqrt{2}}-\sqrt{32}
عامل 8=2^{2}\times 2۔ حاصل ضرب \sqrt{2^{2}\times 2} کے جذر المربع کو جذر المربعوں کے حاصل ضرب \sqrt{2^{2}}\sqrt{2} کے طور پر دوبارہ لکھیں۔ 2^{2} کا جذر لیں۔
6\times \frac{\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}-\sqrt{32}
\frac{1}{2\sqrt{2}} کے نسب نما کو شمار کنندہ اور نسب نما کو \sqrt{2} کے ساتھ ضرب دے کر ناطق کریں۔
6\times \frac{\sqrt{2}}{2\times 2}-\sqrt{32}
\sqrt{2} کا جذر 2 ہے۔
6\times \frac{\sqrt{2}}{4}-\sqrt{32}
4 حاصل کرنے کے لئے 2 اور 2 کو ضرب دیں۔
\frac{6\sqrt{2}}{4}-\sqrt{32}
بطور واحد کسر 6\times \frac{\sqrt{2}}{4} ایکسپریس
\frac{6\sqrt{2}}{4}-4\sqrt{2}
عامل 32=4^{2}\times 2۔ حاصل ضرب \sqrt{4^{2}\times 2} کے جذر المربع کو جذر المربعوں کے حاصل ضرب \sqrt{4^{2}}\sqrt{2} کے طور پر دوبارہ لکھیں۔ 4^{2} کا جذر لیں۔
-\frac{5}{2}\sqrt{2}
-\frac{5}{2}\sqrt{2} حاصل کرنے کے لئے \frac{6\sqrt{2}}{4} اور -4\sqrt{2} کو یکجا کریں۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}