اہم مواد پر چھوڑ دیں
x کے لئے حل کریں
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

5x^{2}-2x-3=0
3 کو دونوں طرف سے منہا کریں۔
a+b=-2 ab=5\left(-3\right)=-15
مساوات حل کرنے کیلئے، گروپنگ کرکے بائیں جانب فیکٹر کریں۔ پہلے، بائیں جانب کو 5x^{2}+ax+bx-3 بطور دوبارہ لکھنا ہو گا۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
1,-15 3,-5
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b منفی ہے، منفی عدد میں مثبت سے زیادہ مطلق قدر ہے۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل -15 ہوتا ہے۔
1-15=-14 3-5=-2
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-5 b=3
حل ایک جوڑا ہے جو میزان -2 دیتا ہے۔
\left(5x^{2}-5x\right)+\left(3x-3\right)
5x^{2}-2x-3 کو بطور \left(5x^{2}-5x\right)+\left(3x-3\right) دوبارہ تحریر کریں۔
5x\left(x-1\right)+3\left(x-1\right)
پہلے گروپ میں 5x اور دوسرے میں 3 اجزائے ضربی میں تقسیم کریں۔
\left(x-1\right)\left(5x+3\right)
عام اصطلاح x-1 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
x=1 x=-\frac{3}{5}
مساوات کا حل تلاش کرنے کیلئے، x-1=0 اور 5x+3=0 حل کریں۔
5x^{2}-2x=3
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
5x^{2}-2x-3=3-3
مساوات کے دونوں اطراف سے 3 منہا کریں۔
5x^{2}-2x-3=0
3 کے خود سے منہا کرنے پر 0 ہی بچتا ہے۔
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 5\left(-3\right)}}{2\times 5}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے 5 کو، b کے لئے -2 کو اور c کے لئے -3 کو متبادل کریں۔
x=\frac{-\left(-2\right)±\sqrt{4-4\times 5\left(-3\right)}}{2\times 5}
مربع -2۔
x=\frac{-\left(-2\right)±\sqrt{4-20\left(-3\right)}}{2\times 5}
-4 کو 5 مرتبہ ضرب دیں۔
x=\frac{-\left(-2\right)±\sqrt{4+60}}{2\times 5}
-20 کو -3 مرتبہ ضرب دیں۔
x=\frac{-\left(-2\right)±\sqrt{64}}{2\times 5}
4 کو 60 میں شامل کریں۔
x=\frac{-\left(-2\right)±8}{2\times 5}
64 کا جذر لیں۔
x=\frac{2±8}{2\times 5}
-2 کا مُخالف 2 ہے۔
x=\frac{2±8}{10}
2 کو 5 مرتبہ ضرب دیں۔
x=\frac{10}{10}
جب ± جمع ہو تو اب مساوات x=\frac{2±8}{10} کو حل کریں۔ 2 کو 8 میں شامل کریں۔
x=1
10 کو 10 سے تقسیم کریں۔
x=-\frac{6}{10}
جب ± منفی ہو تو اب مساوات x=\frac{2±8}{10} کو حل کریں۔ 8 کو 2 میں سے منہا کریں۔
x=-\frac{3}{5}
2 کو اخذ اور منسوخ کرتے ہوئے \frac{-6}{10} کسر کو کم تر اصطلاحات تک گھٹائیں۔
x=1 x=-\frac{3}{5}
مساوات اب حل ہو گئی ہے۔
5x^{2}-2x=3
اس قسم کی مربعی قواعد مربع مکمل کرنے کے بعد حل ہوسکتی ہیں۔ مربع کو مکمل کرنے کے لیئے، مساوات کو پہلے اس شکل میں ہونا ضروری ہے x^{2}+bx=c۔
\frac{5x^{2}-2x}{5}=\frac{3}{5}
5 سے دونوں اطراف کو تقسیم کریں۔
x^{2}-\frac{2}{5}x=\frac{3}{5}
5 سے تقسیم کرنا 5 سے ضرب کو کالعدم کرتا ہے۔
x^{2}-\frac{2}{5}x+\left(-\frac{1}{5}\right)^{2}=\frac{3}{5}+\left(-\frac{1}{5}\right)^{2}
2 سے -\frac{1}{5} حاصل کرنے کے لیے، -\frac{2}{5} کو x اصطلاح کے کو ایفیشنٹ سے تقسیم کریں۔ پھر -\frac{1}{5} کے مربع کو مساوات کی دونوں جانب جمع کریں۔ یہ مرحلہ مساوات کی بائیں ہاتھ کی جانب کو ایک مکمل مربع بناتا ہے۔
x^{2}-\frac{2}{5}x+\frac{1}{25}=\frac{3}{5}+\frac{1}{25}
کسر کا نیومیریٹر اور ڈینومینیٹر دونوں پر مربع لگا کر -\frac{1}{5} کو مربع کریں۔
x^{2}-\frac{2}{5}x+\frac{1}{25}=\frac{16}{25}
ایک مشترکہ ڈینومینیٹر کو ڈھونڈتے ہوئے اور نیومیریٹر کو شامل کر کے \frac{3}{5} کو \frac{1}{25} میں شامل کریں۔ اور پھر کسر کو اگر ممکن ہو تو پست ترین اصطلاح تک گھٹائیں۔
\left(x-\frac{1}{5}\right)^{2}=\frac{16}{25}
فیکٹر x^{2}-\frac{2}{5}x+\frac{1}{25}۔ عمومی طور پر جب x^{2}+bx+c ایک کامل مربع ہوگا تو اسے ہمیشہ \left(x+\frac{b}{2}\right)^{2} کی طرح فیکٹر کیا جا سکتا ہے۔
\sqrt{\left(x-\frac{1}{5}\right)^{2}}=\sqrt{\frac{16}{25}}
مساوات کی دونوں اطراف کا جذر لیں۔
x-\frac{1}{5}=\frac{4}{5} x-\frac{1}{5}=-\frac{4}{5}
سادہ کریں۔
x=1 x=-\frac{3}{5}
مساوات کے دونوں اطراف سے \frac{1}{5} کو شامل کریں۔