اہم مواد پر چھوڑ دیں
عنصر
Tick mark Image
جائزہ ليں
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

4\left(x^{2}+x-2\right)
اجزائے ضربی میں تقسیم کریں 4۔
a+b=1 ab=1\left(-2\right)=-2
x^{2}+x-2 پر غورکریں۔ گروپنگ کرکے اظہار فیکٹر کریں۔ پہلے، اظہار x^{2}+ax+bx-2 کے طور پر دوبارہ لکھنے کی ضرورت ہے۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
a=-1 b=2
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b مثبت ہے، مثبت عدد میں منفی سے زیادہ مطلق قدر ہے۔ اس طرح کی جوڑی ہی سسٹم کا حل ہے۔
\left(x^{2}-x\right)+\left(2x-2\right)
x^{2}+x-2 کو بطور \left(x^{2}-x\right)+\left(2x-2\right) دوبارہ تحریر کریں۔
x\left(x-1\right)+2\left(x-1\right)
پہلے گروپ میں x اور دوسرے میں 2 اجزائے ضربی میں تقسیم کریں۔
\left(x-1\right)\left(x+2\right)
عام اصطلاح x-1 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
4\left(x-1\right)\left(x+2\right)
مکمل منقسم شدہ اظہار کو دوبارہ لکھیں۔
4x^{2}+4x-8=0
دو درجی متعدد رقمی کو استحالہ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) کا استعمال کر کے اجزائے ضربی میں تبدیل کیا جا سکتا ہے، جہاں x_{1} اور x_{2} دو درجی مساوات ax^{2}+bx+c=0 کے حل ہیں۔
x=\frac{-4±\sqrt{4^{2}-4\times 4\left(-8\right)}}{2\times 4}
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x=\frac{-4±\sqrt{16-4\times 4\left(-8\right)}}{2\times 4}
مربع 4۔
x=\frac{-4±\sqrt{16-16\left(-8\right)}}{2\times 4}
-4 کو 4 مرتبہ ضرب دیں۔
x=\frac{-4±\sqrt{16+128}}{2\times 4}
-16 کو -8 مرتبہ ضرب دیں۔
x=\frac{-4±\sqrt{144}}{2\times 4}
16 کو 128 میں شامل کریں۔
x=\frac{-4±12}{2\times 4}
144 کا جذر لیں۔
x=\frac{-4±12}{8}
2 کو 4 مرتبہ ضرب دیں۔
x=\frac{8}{8}
جب ± جمع ہو تو اب مساوات x=\frac{-4±12}{8} کو حل کریں۔ -4 کو 12 میں شامل کریں۔
x=1
8 کو 8 سے تقسیم کریں۔
x=-\frac{16}{8}
جب ± منفی ہو تو اب مساوات x=\frac{-4±12}{8} کو حل کریں۔ 12 کو -4 میں سے منہا کریں۔
x=-2
-16 کو 8 سے تقسیم کریں۔
4x^{2}+4x-8=4\left(x-1\right)\left(x-\left(-2\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) کا استعمال کر کے اصل اظہار کو اجزائے ضربی میں بدلیں۔ x_{1} کے متبادل 1 اور x_{2} کے متبادل -2 رکھیں۔
4x^{2}+4x-8=4\left(x-1\right)\left(x+2\right)
p-\left(-q\right) سے p+q کے فارم کے تمام اظہارات کو آسان بنائیں۔