اہم مواد پر چھوڑ دیں
x کے لئے حل کریں
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

4x^{2}+9+12x=0
\sqrt[3]{729} حساب کریں اور 9 حاصل کریں۔
4x^{2}+12x+9=0
معیاری وضع میں ڈالنے کیلئے پالینامیئل کو پھر ترتیب دیں۔ اصطلاحات کو سب سے زیادہ سے کم ترین پاور کے لحاظ سے ترتیب دیں۔
a+b=12 ab=4\times 9=36
مساوات حل کرنے کیلئے، گروپنگ کرکے بائیں جانب فیکٹر کریں۔ پہلے، بائیں جانب کو 4x^{2}+ax+bx+9 بطور دوبارہ لکھنا ہو گا۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
1,36 2,18 3,12 4,9 6,6
چونکہ ab مثبت ہے، a اور b کی علامت یکساں ہے۔ چونکہ a+b مثبت ہے، a اور b بھی مثبت ہیں۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل 36 ہوتا ہے۔
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
ہر جوڑے کی رقم کا حساب لگائیں۔
a=6 b=6
حل ایک جوڑا ہے جو میزان 12 دیتا ہے۔
\left(4x^{2}+6x\right)+\left(6x+9\right)
4x^{2}+12x+9 کو بطور \left(4x^{2}+6x\right)+\left(6x+9\right) دوبارہ تحریر کریں۔
2x\left(2x+3\right)+3\left(2x+3\right)
پہلے گروپ میں 2x اور دوسرے میں 3 اجزائے ضربی میں تقسیم کریں۔
\left(2x+3\right)\left(2x+3\right)
عام اصطلاح 2x+3 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
\left(2x+3\right)^{2}
دو رقمی مربع کے طور پر دوبارہ لکھیں۔
x=-\frac{3}{2}
مساوات کا حل تلاش کرنے کیلئے، 2x+3=0 حل کریں۔
4x^{2}+9+12x=0
\sqrt[3]{729} حساب کریں اور 9 حاصل کریں۔
4x^{2}+12x+9=0
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x=\frac{-12±\sqrt{12^{2}-4\times 4\times 9}}{2\times 4}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے 4 کو، b کے لئے 12 کو اور c کے لئے 9 کو متبادل کریں۔
x=\frac{-12±\sqrt{144-4\times 4\times 9}}{2\times 4}
مربع 12۔
x=\frac{-12±\sqrt{144-16\times 9}}{2\times 4}
-4 کو 4 مرتبہ ضرب دیں۔
x=\frac{-12±\sqrt{144-144}}{2\times 4}
-16 کو 9 مرتبہ ضرب دیں۔
x=\frac{-12±\sqrt{0}}{2\times 4}
144 کو -144 میں شامل کریں۔
x=-\frac{12}{2\times 4}
0 کا جذر لیں۔
x=-\frac{12}{8}
2 کو 4 مرتبہ ضرب دیں۔
x=-\frac{3}{2}
4 کو اخذ اور منسوخ کرتے ہوئے \frac{-12}{8} کسر کو کم تر اصطلاحات تک گھٹائیں۔
4x^{2}+9+12x=0
\sqrt[3]{729} حساب کریں اور 9 حاصل کریں۔
4x^{2}+12x=-9
9 کو دونوں طرف سے منہا کریں۔ کوئی بھی چیز صفر میں سے تفریق ہوکر اپنا نفی دیتی ہے۔
\frac{4x^{2}+12x}{4}=-\frac{9}{4}
4 سے دونوں اطراف کو تقسیم کریں۔
x^{2}+\frac{12}{4}x=-\frac{9}{4}
4 سے تقسیم کرنا 4 سے ضرب کو کالعدم کرتا ہے۔
x^{2}+3x=-\frac{9}{4}
12 کو 4 سے تقسیم کریں۔
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-\frac{9}{4}+\left(\frac{3}{2}\right)^{2}
2 سے \frac{3}{2} حاصل کرنے کے لیے، 3 کو x اصطلاح کے کو ایفیشنٹ سے تقسیم کریں۔ پھر \frac{3}{2} کے مربع کو مساوات کی دونوں جانب جمع کریں۔ یہ مرحلہ مساوات کی بائیں ہاتھ کی جانب کو ایک مکمل مربع بناتا ہے۔
x^{2}+3x+\frac{9}{4}=\frac{-9+9}{4}
کسر کا نیومیریٹر اور ڈینومینیٹر دونوں پر مربع لگا کر \frac{3}{2} کو مربع کریں۔
x^{2}+3x+\frac{9}{4}=0
ایک مشترکہ ڈینومینیٹر کو ڈھونڈتے ہوئے اور نیومیریٹر کو شامل کر کے -\frac{9}{4} کو \frac{9}{4} میں شامل کریں۔ اور پھر کسر کو اگر ممکن ہو تو پست ترین اصطلاح تک گھٹائیں۔
\left(x+\frac{3}{2}\right)^{2}=0
فیکٹر x^{2}+3x+\frac{9}{4}۔ عمومی طور پر جب x^{2}+bx+c ایک کامل مربع ہوگا تو اسے ہمیشہ \left(x+\frac{b}{2}\right)^{2} کی طرح فیکٹر کیا جا سکتا ہے۔
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{0}
مساوات کی دونوں اطراف کا جذر لیں۔
x+\frac{3}{2}=0 x+\frac{3}{2}=0
سادہ کریں۔
x=-\frac{3}{2} x=-\frac{3}{2}
مساوات کے دونوں اطراف سے \frac{3}{2} منہا کریں۔
x=-\frac{3}{2}
مساوات اب حل ہو گئی ہے۔ حل ایک جیسے ہیں۔