عنصر
4u\left(u+2\right)
جائزہ ليں
4u\left(u+2\right)
حصہ
کلپ بورڈ پر کاپی کیا گیا
4\left(u^{2}+2u\right)
اجزائے ضربی میں تقسیم کریں 4۔
u\left(u+2\right)
u^{2}+2u پر غورکریں۔ اجزائے ضربی میں تقسیم کریں u۔
4u\left(u+2\right)
مکمل منقسم شدہ اظہار کو دوبارہ لکھیں۔
4u^{2}+8u=0
دو درجی متعدد رقمی کو استحالہ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) کا استعمال کر کے اجزائے ضربی میں تبدیل کیا جا سکتا ہے، جہاں x_{1} اور x_{2} دو درجی مساوات ax^{2}+bx+c=0 کے حل ہیں۔
u=\frac{-8±\sqrt{8^{2}}}{2\times 4}
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
u=\frac{-8±8}{2\times 4}
8^{2} کا جذر لیں۔
u=\frac{-8±8}{8}
2 کو 4 مرتبہ ضرب دیں۔
u=\frac{0}{8}
جب ± جمع ہو تو اب مساوات u=\frac{-8±8}{8} کو حل کریں۔ -8 کو 8 میں شامل کریں۔
u=0
0 کو 8 سے تقسیم کریں۔
u=-\frac{16}{8}
جب ± منفی ہو تو اب مساوات u=\frac{-8±8}{8} کو حل کریں۔ 8 کو -8 میں سے منہا کریں۔
u=-2
-16 کو 8 سے تقسیم کریں۔
4u^{2}+8u=4u\left(u-\left(-2\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) کا استعمال کر کے اصل اظہار کو اجزائے ضربی میں بدلیں۔ x_{1} کے متبادل 0 اور x_{2} کے متبادل -2 رکھیں۔
4u^{2}+8u=4u\left(u+2\right)
p-\left(-q\right) سے p+q کے فارم کے تمام اظہارات کو آسان بنائیں۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}